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“For many tasks, words
and word combinations
provide all the
representational
machinery we need to
learn from text.”

EXPERT OPINION

Contact Editor: Brian Brannon, bbrannon@computer.org

The Unreasonable
Effectiveness of Data

Alon Halevy, Peter Norvig, and Fernando Pereira, Google

ugene Wigner’s article “The Unreasonable Ef-

fectiveness of Mathematics in the Natural Sci-

1

ences”! examines why so much of physics can be

neatly explained with simple mathematical formulas

such as f= ma or e = mc2. Meanwhile, sciences that
involve human beings rather than elementary par-
ticles have proven more resistant to elegant math-
ematics. Economists suffer from physics envy over
their inabilitv to neatlv model human behavior.

behavior. So, this corpus could serve as the basis of
a complete model for certain tasks—if only we knew
how to extract the model from the data.

Learning from Text at Web Scale

The biggest successes in natural-language-related
machine learning have been statistical speech rec-
ognition and statistical machine translation. The
reason for these successes is not that these tasks are
easier than other tasks; they are in fact much harder
than tasks such as document classification that ex-



The Role of Data: 2020+

Scaling Laws:

Capture the precise trade-off
between model quality, training
dataset size, and computation
necessar
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LONG UVE. THE REVOLUTION.
OUR NEXT MEETING WILL BE
AT

But need good data hygiene pm o101

Data comes with restrictions on use:

- Some data may be personal: names, phone numbers, locations, ...
WHEN YOU TRAIN ICTVE MODE
- Some data may be regulated: GDPR, AlA, ... O/ NPUT. FROIM YOUR USERS, T CAV

LEAK INFORMATION IN UNEXPECTED LAYS,

For LLMs especially:

- Larger data sets are more likely to include private information by chance

- Models are large, opaque, and difficult to understand directly

- GenAl outputs are rich enough (text, images) to potentially include detailed
private information



The Promise of Synthetic Data

What if...

- Can generate new data
- That is similar in distribution to given data
- But is entirely synthetic and new...

Can we train models on synthetic data instead?



Why Synthetic Data”?

Change the beginning of the usual pipeline

Data > Training - FineTuning - Model —  Deployment

l Ji

By changing the data, keep the rest of the pipeline the same:

- Same architecture

- Same optimizers

- Same deployment checks
- Same ...



Types of Synthetic Data

a N e

Pure Synthetic Data DP Synthetic Data

A Y _




Pure Synthetic Data: Homework for LLMs

“Synthetic data generation using large language models (LLMs) offers a powerful solution to a commonly
faced problem: the availability of high-quality, diverse, and privacy-compliant data.”

Synthetic data is used to:
- Create more examples of the same concept (e.g. generate more 5th grade algebra problems)
- Rewrite or rephrase training examples to get more diversity (e.g. provide summaries of topics)

Mostly commonly generated by prompting existing LLMSs:

There are movies and
then there are films. The
plot...

Suppose you are a movie reviewer. Please generate a
movie review to show your <feeling> about the movie
<movie> with detailed explanation...




Pure Synthetic Data: Perpetual Motion Machine?

nature

Explore content v  About the journal v  Publish with us v

nature > articles > article

Article | Open access | Published: 24 July 2024

Al models collapse when trained on recursively
generated data

In addition to other challenges — e.g. factuality / hallucination, diversity of examples, representativeness, etc.



Types of Synthetic Data
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Pure Synthetic Data DP Synthetic Data
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DP Synthetic Data

Many-Many Relationship between user data and synthetic data with strong privacy protections.

DP Synthetic Data Generation

Data Record Synthetic

Data Record

i e e )
Data Record e Synthetic
; = Data Record
: \_ J

Data Record Synthetic
Data Record

Data Record

Differential Privacy Synthetic ]

Data Record

Aggregation o
Generalization



Today

- What is privacy?

- How to generate useful DP Synthetic Data - text, images, tables, ...
- How to evaluate its utility?

- What else you need to do in practice?
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What is privacy? ﬁ %

Privacy (UK: /' privasi:/, US: /'prai-/) is the ability of an individual or group to
seclude themselves or information about themselves, and thereby express
themselves selectively.

(From Wikipedia)



Privacy Principles in Machine Learning

- Transparency and User control
o Users can be aware of what data is used, what purpose it is used or and how it is
processed, and have full control on whether to enable the collection and use of their
data
- Data minimization
o Datais only collected focusing on specific computation needs, with access limited at
all data processing stages
- Data anonymization

o The final released output of the computation (e.g. ML model) does not reveal anything
unique about an individual.

- Auditability and verifiability
o Users, and potentially third parties can audit and verify privacy claims by examining
released models, open-sourced code, and privitarized system logs, etc.



How to anonymize?

|dea 1:
-  Remove user ids!

Google



The "Re-identification” of Governor William Weld's Medical

: 2 Information: A Critical Re-examination of Health Data Identification Risks
H oW tO ano nym 1ZE and Privacy Protections, Then and Now

Author: Daniel C. Barth-Jones, M.P.H., Ph.D., Assistant Professor of Clinical Epidemiology, Department of
Epidemiology, Mailman School of Public Health, Columbia University.

|dea 1:

) Abstract:
-  Remove user ids!

The 1997 re-identification of Massachusetts Governor William Weld’'s medical
data within an insurance data set which had been stripped of direct identifiers

TECHNOLOGY has had a profound impact on the development of de-identification provisions
within the 2003 Health Insurance Portability and Accountability Act (HIPAA)

A Face Is Exposed for AOL Searcher No. 4417749

By MICHAEL BARBARO and TOM ZELLER Robust De-anonymization of Large Datasets

(How to Break Anonymity of the Netflix Prize Dataset)

- 5 digit zipcode + DOB + gender uniquely identifies 87% of US
population.



How to anonymize?

ldea 2:
- Only allow access to aggregates

Google



How to anonymize?

ldea 2:
- Only allow access to aggregates

Resolving Individuals Contributing Trace Amounts of DNA to
Highly Complex Mixtures Using High-Density SNP
Genotyping Microarrays

Nils Homer, Szabolcs Szelinger, Margot Redman, David Duggan, Waibhav Tembe, Jill Muehling, John V. Pearson,
Diefrich A. Stephan, Stanley F. Nelson, David W. Craig

- Determined if a particular participant is part of the dataset
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How to anonymize?

ldea 3:
- Make sure at least k different people share the attributes
- “k-anonymity”

Google



How to anonymize?

ldea 3:
- Make sure at least k different people share the attributes
- “k-anonymity”

Attacks:
- [Homogeneity]: All k people share a sensitive attribute.
- “All k have declared bankruptcy in the past”

Google



How to anonymize?

Idea 3 (b):
- Make sure at least k different people share the attributes
- And sensitive attributes are diverse in each equivalence class
- “k-anonymity with I-diversity”

Google



How to anonymize?

Idea 3 (b):
- Make sure at least k different people share the attributes
- And sensitive attributes are diverse in each equivalence class
- “k-anonymity with I-diversity”

Attack:
- Consider a class that has people who are either bankrupt or convicted
of crime.

Google



How to anonymize?

ldea 3 (c):
- Make sure at least k different people share the attributes
- And sensitive attributes are diverse in each equivalence class
- And distribution of sensitive attribute is similar to global
- “k-anonymity with I-diversity and t-closeness”

Google



How to anonymize?

ldea 3 (c):
- Make sure at least k different people share the attributes
- And sensitive attributes are diverse in each equivalence class
- And distribution of sensitive attribute is similar to global.
- “k-anonymity with I-diversity and t-closeness”

Attack:
- Still have to define sensitive attributes. Does not prevent information
leakage when attacker knows additional information about the

subject.
Google



What do we want?

The output of an algorithm should be the same whether or not a specific
individual participated.

Google



What do we want?

The output of an algorithm should be the same whether or not a specific
individual participated.

Too harsh: by induction no learning can happen

Google



What do we want?

The probability of an output of an algorithm should be almost the same
whether or not a specific individual participated.

Google



Example

Want to return the average age of people in this room
- Without revealing my age

System returns:
- True answer + Gaussian noise with mean O, std 1

Google



Noisy Average Age

Result Distribution

Google



Noisy Average Age

Result Distribution, when average differs by one

/

N
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Google



Noisy Average Age

Given actual result (red): can’t say if it came from blue or black curves

More likely that it came from blue curve, but not much more likely.
Google



Example

Want to return the average age of people in this room
- Without revealing my age

System returns:
- True answer + Gaussian noise with mean O, std 1

Even if attacker knows the age of everyone else, can’t definitively say what
my age is, just give a distribution.

Google



Some more details
.

VAN A
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If a single individual makes a big difference in the answer, the curves are

well separated, so result is less private. Google



Some more details
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Differential Privacy

The probability of an output of an algorithm should be almost the same
whether or not a specific individual participated.

Has a parameter “epsilon” which controls privacy vs. utility trade-off.
Loosely speaking:
- Effect of single person changing the answer / std. deviation of noise
- Larger epsilon = less private.
- Typical values (0.1-0.2 in academia, 1-10 in industry)

Google



Differential Privacy Summary

Limit outliers and contributions from any user:

- Outliers in value or in number of data points contributed
Aggregate information across many users

- Aggregation is a key anonymization component

Add some noise to the aggregates

- Need to add noise to protect against differencing attacks



Example: Gradient Descent with Differential Privacy

- Sample examples to form a batch

- “Clip” or bound the individual gradients
- Average across the batch

- Add noise the average

- Sensitivity analysis to decide an appropriate amount of noise for DP
guarantees
- Can be calculated analytically for some functions like strongly convex
linear ones
- General solution is just to clip per example gradient to some

predefined norm C
More in How to DP-fy ML Sec. 4.1.2



https://arxiv.org/pdf/2303.00654.pdf

Example: DP Training: DP-SGD

Training Data Model Weights Model Weights Updates

Example 1 (‘ ‘ ‘ ‘ O ~ Loss ) Grad ) ( Clipped Grad ) Cﬁ
Example 2 (‘ ‘ ‘ ‘ m . Loss ) Grad ) C Clipped Grad) Qummed Grad> (‘ —— Grad)
Example 3 ( \ ( Loss ) Grad ) CCIipped Grad )
Example 4 (. . . . 0 &ss ) &ad ) ( Clipped Grad)

More in How to DP-fy ML Sec. 4.2



https://arxiv.org/pdf/2303.00654.pdf

Key Differential Privacy Properties

Post-Processing & Composition:

- Any user-data independent transformation (post-processing) with arbitrary
additional information retains all of the differential privacy properties

Composition:
- When combining several DP methods together, combine the DP parameters.

Theoretical Guarantees:

- The mathematical guarantees provided are on the algorithm used to generate
the anonymous data. Use robust, well-established libraries (like crypto).



Key Parameters when Designing Differential Privacy

Privacy Unit: What is a user?
Contribution Bounding: How to limit outliers?
Methods: Which private method are you using?

Parameters: What is the value of epsilon, delta?
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Overview

1. Taxonomy of methods
2. Methods
a. DP finetuning
b. Private evolution
c. DP inference
3. Comparison

For each method: Will cover (1) how the algorithm works; (2)
how and when to use it
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Taxonomy of methods for DP text synthesis

Goal: Unlock value of private text data with DP
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Taxonomy of methods for DP text synthesis

Goal: Unlock value of private text data with DP

DP Synthetic data = organizational breakthrough for DP
DP-fy DP Synthetic data 1. Bespoke DPfying someone’s training pipeline is hard

downstream 2. Everyone knows what to do with data
training
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Taxonomy of methods for DP text synthesis

Goal: Unlock value of private text data with DP

DP Synthetic data = organizational breakthrough for DP

DP-fy DP Synthetic data 1. Bespoke DPfying someone’s training pipeline is hard
downstream 2. Everyone knows what to do with data
training
Product and data owner: DP team expertise:
- training pipelines Interface: - organizational privacy requirements
- domain knowledge DP Synthetic data - DP correctness
- other data sources - optimization for utility
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Taxonomy of methods for DP text synthesis

Goal: Unlock value of private text data with DP

DP-fy DP Synthetic data
downstream

training

DP Finetuning Inference-only
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Taxonomy of methods for DP text synthesis

Goal: Unlock value of private text data with DP

DP Finetuning

DP-fy DP Synthetic data - Finetune an LLM with DP-SGD to generate data
downstream
training {

inputs: “Generate data”,

targets: “{data record 1i}”

DP Finetuning Inference-only \

Workhorse method that is the best for most cases
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Taxonomy of methods for DP text synthesis

Goal: Unlock value of private text data with DP

Private dataset

DP-fy DP Synthetic data
downstream o ke thi ;
training Give me a dataset like this one
LLM
DP Finetuning  Inference-only
DP synthetic dataset
Private evolution DP LLM inference
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Taxonomy of methods for DP text synthesis

Goal: Unlock value of private text data with DP

Private evolution

DP-fy DP Synthetic data - starting from a synthetic seed corpus
?OWDStream - jteratively select and modify examples guided by
raining

embedding distance to private data

DP Finetuning  Inference-only Best results for low epsilon/low data volume

Private evolution DP LLM inference
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Taxonomy of methods for DP text synthesis

Goal: Unlock value of private text data with DP

DP LLM inference

DP-fy DP Synthetic data - Introduce DP during language model decoding step
downstream - Privacy cost increases with the number of tokens you
training generate

DP Finetuning  Inference-only Best for getting a few examples, very quickly

Private evolution DP LLM inference
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Taxonomy of methods for DP text synthesis

Goal: Unlock value of private text data with DP

We will cover these 3 methods today.

DP-fy DP Synthesis
downstream

training

1. DP Finetuning | Inference-only

2. Private evolution 3. DP LLM inference
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DP finetuning

Use DP-SGD to finetune a pre-trained LLM into a data generator.

The most straightforward and performant method.

1. Training “Generate text” LLM real data record
pling “Generate text Y o

Use LoRA on all layers

- LoRA outperforms full finetuning empirically
- Also efficiency gains with DP



Iterative training with differential privacy

1. Sample a batch of examples
and compute gradients for the current model

M. Abadi, et. al. Deep Learning with
Differential Privacy. CCS 2016.



Iterative training with differential privacy

2. Clip each gradient to maximum L, norm S

Clipto S

Clipto S

M. Abadi, et. al. Deep Learning with
Differential Privacy. CCS 2016.



Iterative training with differential privacy

3. Average clipped gradients

Clipto S

Clipto S

M. Abadi, et. al. Deep Learning with
Differential Privacy. CCS 2016.



Iterative training with differential privacy

4. Add (Gaussian) noise

o
Clipto S

/N

Clipto S

M. Abadi, et. al. Deep Learning with
Differential Privacy. CCS 2016.



Iterative training with differential privacy

5. Take a step of SGD

o
Clipto S

-Ijl\ Noised

Average
Gradient

Clipto S

M. Abadi, et. al. Deep Learning with
Differential Privacy. CCS 2016.



Iterative training with differential privacy

6. Repeat for many iterations, accumulating
the privacy cost of each database access

o
Clipto S

-Ijl\ Noised

Average
Gradient

Clipto S

M. Abadi, et. al. Deep Learning with
Differential Privacy. CCS 2016.
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DP-SGD

Algorithm 1 Differentially private SGD

1: Input: N examples, batch size B, steps T', clip norm C, noise multiplier o.
2: Initialize 6y randomly.

3: fort=1toT do

4: Sample batch B; by including each example with probability p = B/N
5 for each z; € B; do

6: gi(x;) < Vol(z;;0;) > Per-example gradient
7§

g¢(x;) + g¢(x;)/ max(1, lg: %””2) > Clip per-example gradient

8: gt +— 5 (32, 9t(z:) + N(0,0%C?1)) > Add noise and average

9: Ht—l—l <— 9,5 — ’I’]gt
return 01
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DP-SGD

Algorithm 1 Regular SGD

1: Input: N examples, batch size B, iterations 7'
2: Initialize 6y randomly.

3: fort=1to 71 do

4: Draw batch B; cyclically from the dataset

5: for each z; € B; do

6: gt(z;) < Vol(x;;0;) > Per-example gradient
7: gt(x;) < gi(x;) > Do nothing to per-example gradients
8: gt — 5 (X, ge(z:)) > Do not add noise and average

9: Ht—l—l <— Ht — T]gt
return 01
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DP-SGD

Algorithm 1 Differentially private SGD

1: Input: N examples, batch size B, steps T', clip norm C, noise multiplier o.
2: Initialize 6y randomly.
3: fort=1toT do

4: Sample batch B; by including each example with probability p = B/N

5 for each z; € B; do
6: g¢(x;) < Vol(x;;6:) > Per-example gradient
7 g¢(z;) < gu(z;)/ max(1, 19t (g")llz) > Clip per-example gradient
8: gt +— 5 (32, 9t(z:) + N(0,0%C?1)) > Add noise and average
9: 9t+1 Ht — NG

return 01

DP Accounting: based on parameters chosen, compute privacy guarantee g(N, B, T, o)
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Per-example gradient clipping in JAX

3
np.random.randn(2) # (D,)
np.random.randn(N, 2) # (N, D)

np.random.randn(N) # (N,) Simple regression example
def loss(w, data):

X, y = data
return jnp.sum((X @ w - y)**2)

< X = Z2
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Per-example gradient clipping in JAX

3

np.random.randn(2) # (D,)
np.random.randn(N, 2) # (N, D)
np.random.randn(N) # (N,)

< X = Z2

def loss(w, data):
X, y = data
return jnp.sum((X @ w - y)**2)

grad_fn = jax.grad(loss)
>>> grad_fn(w, (X, y))
Array([17.44384 , 6.9017286], dtype=float32)

Simple regression example

Compute gradients wrt.

parameters w
- sum of per-example gradients

Training loop: update w, draw a new batch, ...
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Per-example gradient clipping in JAX

# grad_fn: w, data -> dl/dw
grads = jnp.stack( Naive per-example grads

[grad_fn(w, (xi, yi)) for xi, yi in zip(X, y)]I
) # (N, D)




Google Research

Per-example gradient clipping in JAX

# grad_fn: w, data -> dl/dw

grads = jnp.stack( Naive per-example grads

[grad_fn(w, (xi, yi)) for xi, yi in zip(X, y)]I

) # (N, D)
>>> grads
Array([[ 5.3370066 , 12.219472 ],
[ 9.310922 , -4.8723297 |,
[ 2.795912 , -0.44541267]], dtype=float32)
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Per-example gradient clipping in JAX

# grad_fn: w, data -> dl/dw

grads = jnp.stack( Naive per-example grads

[grad_fn(w, (xi, yi)) for xi, yi in zip(X, y)]I
) # (N, D)

def clip(g, C):
return g * jnp.minimum(1, C / jnp.linalg.norm(g))

clipped_grads = jnp.stack([clip(g, 1) for g in grads])
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Per-example gradient clipping in JAX

# grad_fn: w, data -> dl/dw

grads = jnp.stack(
[grad_fn(w, (xi, yi)) for xi, yi in zip(X, y)]I
) # (N, D)

def clip(g, C):
return g * jnp.minimum(1, C / jnp.linalg.norm(g))

clipped_grads = jnp.stack([clip(g, 1) for g in grads])
>>> clipped_grads
Array([[ ©.40025145, ©.91640854 ],

[ 6.88601995, -0.46364704],

[ ©.987547 , -0.15732467]], dtype=float32)

Naive per-example grads
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Per-example gradient clipping in JAX

# grad_fn: w, data -> dl/dw

grads = jnp.stack(
[grad_fn(w, (xi, yi)) for xi, yi in zip(X, y)]I
) # (N, D)

def clip(g, C):
return g * jnp.minimum(1, C / jnp.linalg.norm(g))

clipped_grads = jnp.stack([clip(g, 1) for g in grads])
>>> jnp.sum(clipped_grads, axis=0) # (D,)
Array([2.2738183 , ©.29543367], dtype=float32)

Add noise to this, and use instead
of the regular grad

Naive per-example grads
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Per-example gradient clipping in JAX

# grad_fn: w, data -> dl/dw

grads = jnp.stack( Naive per-example grads

[grad_fn(w, (xi, yi)) for xi, yi in zip(X, y)]I

) # (N, D) SLOW

def clip(g, C):
return g * jnp.minimum(1, C / jnp.linalg.norm(g))

clipped_grads = jnp.stack([clip(g, 1) for g in grads])
>>> jnp.sum(clipped_grads, axis=0) # (D,)
Array([2.2738183 , ©.29543367], dtype=float32)

Add noise to this, and use instead
of the regular grad
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Per-example gradient clipping in JAX

# grad_fn: w, data -> dl/dw

grads = jnp.stack( USlng j aXx. Vmap
[grad_fn(w, (xi, yi)) for xi, yi in zip(X, y)]

L SLOW

vimap_grad_fn = jax.vmap( axis of the data argument
grad_fn,

Vectorize over the batch

in_axes=(None, (0, 0))

)
grads = vmap_grad_fn(w, (X, y)) # (N, D)
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Per-example gradient clipping in JAX

# grad_fn: w, data -> dl/dw

grads = jnp.stack( USlng j aXx. Vmap
[grad_fn(w, (xi, yi)) for xi, yi in zip(X, y)]

L SLOW

Vectorize over the batch

vimap_grad_fn = jax.vmap( axis of the data argument
grad_fn,

in_axes=(None, (0, 0))

)
grads = vmap_grad_fn(w, (X, y)) # (N, D)
>>> grads
Array([[ 5.337006 , 12.219471 1,
[ 9.310922 , -4.8723297 ],
[ 2.795912 , -0.44541267]], dtype=float32)
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Per-example gradient clipping in JAX

# grad_fn: w, data -> dl/dw

grads = jnp.stack( USlng j aXx. Vmap
[grad_fn(w, (xi, yi)) for xi, yi in zip(X, y)]

L SLOW

Vectorize over the batch

vimap_grad_fn = jax.vmap( axis of the data argument
grad_fn,

in_axes=(None, (6, 0)),
spmd_axis_name="devices”

| N\

Parallelize the operation|across devices
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Per-example gradient clipping in JAX

# loss: w, data -> float

grad_fn = jax.grad(loss)
>>> grad_fn(w, (X, y))
Array([17.44384 , 6.9017286], dtype=float32)

Regular training
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Per-example gradient clipping in JAX

# loss: w, data -> float

grad_fn = jax.grad(loss)
>>> grad_fn(w, (X, y))
Array([17.44384 , 6.9017286], dtype=float32)

# ... vmap + clip

clipped_grads = jnp.stack([clip(g, 1) for g in grads])
>>> jnp.sum(clipped_grads, axis=0) # (D,)
Array([2.2738183 , ©.29543367], dtype=float32)

Regular training

Replacement for grad
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Per-example gradient clipping in JAX

# loss: w, data -> float

grad_fn = jax.grad(loss) .
e a5 9 Regular training
Array([17.44384 , 6.9017286], dtype=float32)

Drop in replacement for
jax.gradl!

clipped_grads = jnp.stack([clip(g, 1) g grads])
jnp.sum(clipped_grads, )
Array([ , ], float32)

import jax_privacy

clipped_grad_fn = jax_privacy.experimental.clipped_grad(loss, 12_clip_norm=1)
>>> clipped_grad_fn(w, (X, y))

Array([2.2738183 , ©.29543367], dtype=float32)
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github.com/google-deepmind/jax_privacy
jax_privacy v1.0.0 update

LD ¥ main ~ jax_privacy / examples /| (& Q. Go to file

RamSaw Update to v1.0.0 X 52€9674 - 4 days ago  \Y)

Name Last commit message Last commit date

[ distributed_noise_generation.py Update to v1.0.0 4 days ago
D dp_sgd_flax_linen_mnist.ipynb Update to v1.0.0 4 days ago
[ dp_sgd_keras_gemma3_lora_finetuning_sa... Update to v1.0.0 4 days ago
[ dp_sgd_keras_gemma3_synthetic_data.ipynb Update to v1.0.0 4 days ago
[ dpmf_strategy_optimization.py Update to v1.0.0 4 days ago
[ jax_api_example.py Update to v1.0.0 4 days ago
[ jax_new_api_example.py Update to v1.0.0 4 days ago
[ keras_api_example.py Update to v1.0.0 4 days ago
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github.com/google-deepmind/jax_privacy

106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

noise_multiplier = calibrate.calibrate_noise_multiplier(
target_epsilon=1.0,
accountant=accountant,
batch_sizes=batch_size,
num_updates=num_epochs *x train_size // batch_size,
num_samples=train_size,
target_delta=le-5,

)

noise_rng = random.key(42)

grad_and_value_fn = gradient_clipping.clipped_grad(
loss_fn,
12_clip_norm=clipping_norm,
batch_argnums=(1, 2),
has_aux=False,
return_values=True,

)

sensitivity = grad_and_value_fn.sensitivity(
dp_accounting.NeighboringRelation.REPLACE_ONE

)

privatizer = noise_addition.gaussian_privatizer(

stddev=noise_multiplier *x sensitivity, noise_key=noise_rng

Example training loop:
jax_privacy/examples/jax
_new_api_example.py



https://github.com/google-deepmind/jax_privacy/blob/main/examples/jax_new_api_example.py
https://github.com/google-deepmind/jax_privacy/blob/main/examples/jax_new_api_example.py
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github.com/google-deepmind/jax_privacy

Enabling Differentially Private Fine-tuning

The pre-trained model itself is not differentially private with respect to its initial training data, which we consider non-sensitive.
However, the data used for fine-tuning in real world scenarioes usually is sensitive. To ensure the privacy of this sensitive data (IMDb
reviews in our case), we prepare the model so that any subsequent training on this data will be differentially private. This process
makes our fine-tuned model differentially private with respect to the sensitive fine-tuning data.

In [171:  jf CONFIG["USE_DP"I:
params = keras_api.DPKerasConfig(
epsilon=CONFIG["EPSILON"],
delta=CONFIG["DELTA"],
clipping_norm=CONFIG["CLIPPING_NORM"],
batch_size=CONFIG["BATCH_SIZE"],
train_steps=CONFIG["EPOCHS"] x (TRAIN_SIZE // CONFIG["BATCH_SIZE"]),
train_size=TRAIN_SIZE,
gradient_accumulation_steps=CONFIG["GRADIENT_ACCUMULATION_STEPS"],
seed=CONFIG["SEED"],
)
gemma_1lm = keras_api.make_private(gemma_1lm, params)
print(
"DP training:"
f"{CONFIG['CLIPPING_NORM']=} {CONFIG['EPOCHS']=} {CONFIG['BATCH_SIZE']=}"
)
else:
print("Non-DP training")

In [181: it CONFIG["FINETUNE_MODEL"]:
optimizer = keras.optimizers.Adam(
learning_rate=CONFIG["LEARNING_RATE"],
gradient_accumulation_steps=CONFIG["GRADIENT_ACCUMULATION_STEPS"],
)

gemma_1lm. compile(
loss=keras. losses.SparseCategoricalCrossentropy(from_logits=True),
optimizer=optimizer,
weighted_metrics=[keras.metrics.SparseCategoricalAccuracy()],
)
else:
print("Not finetuning model")

Colab tutorial:
jax_privacy/examples/
dp_sagd_keras_gemma3_synthe
tic_data.ipynb



https://github.com/google-deepmind/jax_privacy/blob/main/examples/dp_sgd_keras_gemma3_synthetic_data.ipynb
https://github.com/google-deepmind/jax_privacy/blob/main/examples/dp_sgd_keras_gemma3_synthetic_data.ipynb
https://github.com/google-deepmind/jax_privacy/blob/main/examples/dp_sgd_keras_gemma3_synthetic_data.ipynb
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github.com/google-deepmind/jax_privacy

Enabling Differentially Private Fine-tuning

The pre-trained model itself is not differentially private with respect to its initial training data, which we consider non-sensitive.
However, the data used for fine-tuning in real world scenarioes usually is sensitive. To ensure the privacy of this sensitive data (IMDb CO I a b -tu-to ri a I :
reviews in our case), we prepare the model so that any subsequent training on this data will be differentially private. This process
makes our fine-tuned model differentially private with respect to the sensitive fine-tuning data.

jax_privacy/examples/
In (171t jf CONFIG["USE_DP"]:
sy B e dp_sqd keras_gemmad._synthe

delta=CONFIG["DELTA"],

clipping_norm=CONFIG["CLIPPING_NORM"], -t d -t 1 b
batch_size=CONFIG["BATCH_SIZE"], IC_ a a o I Dvn
train_steps=CONFIG["EPOCHS"] x (TRAIN_SIZE // CONFIG["BATCH_SIZE"]), o
train_size=TRAIN_SIZE,

gradient_accumulation_steps=CONFIG["GRADIENT_ACCUMULATION_STEPS"],
seed=CONFIG["SEED"],

) Gemma 12B synthetic IMDB
gemma_1lm = keras_api.make_private(gemma_1lm, params)
print( .

"DP training:" DP synthetic

f"{CONFIG['CLIPPING_NORM']=} {CONFIG['EPOCHS']l=} {CONFIG['BATCH_SIZE']=}"
)

else: zero-shot
print("Non-DP training")

In [18]: it CONFIG["FINETUNE_MODEL"]: 6-shot
optimizer = keras.optimizers.Adam(
learning_rate=CONFIG["LEARNING_RATE"], .
gradient_accumulation_steps=CONFIG["GRADIENT_ACCUMULATION_STEPS"], non-DP synthetic
)
gemma_1lm. compile( real
loss=keras. losses.SparseCategoricalCrossentropy(from_logits=True),
optimizer=optimizer, I i I i i
weighted_metrics=[keras.metrics.SparseCategoricalAccuracy()], 0.0 0.2 0.4 0.6 0.8 1.0
) MAUVE Score

else:
print("Not finetuning model")



https://github.com/google-deepmind/jax_privacy/blob/main/examples/dp_sgd_keras_gemma3_synthetic_data.ipynb
https://github.com/google-deepmind/jax_privacy/blob/main/examples/dp_sgd_keras_gemma3_synthetic_data.ipynb
https://github.com/google-deepmind/jax_privacy/blob/main/examples/dp_sgd_keras_gemma3_synthetic_data.ipynb
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Hyperparameter tuning

Important hparams: Steps T, Batch size B, clipping norm C, noise multiplier ¢

| .
9=3 (Z clipc(gi) + N(0,0°C?1 ))

1. Under a particular threshold C, a large range works:
a. Pick C so that almost all gradients are clipped, which corresponds to a
biased, but less noisy update




Small clip norm:
update
magnitudes lost

Large clip
norm: high
noise for DP

=
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Hyperparameter tuning

Important hparams: Steps T, Batch size B, clipping norm C, noise multiplier ¢

| .
9=3 (Z clipc(gi) + N(0,0°C?1 ))

1. Under a particular threshold C, a large range works:
a. Pick C so that almost all gradients are clipped, which corresponds to a
biased, but less noisy update
2. Normalize the update to decouple learning rate from C
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Hyperparameter tuning

Important hparams: Steps T, Batch size B, clipping norm C, noise multiplier ¢

g= % (Z é‘dipc(gz') + N(0, 021))

()

1. Under a particular threshold C, a large range works:
a. Pick C so that almost all gradients are clipped, which corresponds to a
biased, but less noisy update
2. Normalize the update to decouple learning rate from C
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"
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1

—— Learning rate n=1.0
—— Learning rate n=2.0
—$— Learning rate n=4.0

Validation Accuracy (%)
(@) ~
0y o

@)
o

270 24 272 20 22 24 20
Clipping Norm C

Source: Unlocking High-Accuracy Differentially Private Image Classification through Scale (De et
al., 2022)



https://arxiv.org/abs/2501.18914
https://arxiv.org/abs/2501.18914
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Hyperparameter tuning

- Important hparams: Steps T, Batch size B, clipping norm C, noise multiplier o

I | 1 ..
9=75 (22: Echpc(gi) + N (O, 021))

1. Under a particular threshold C, a large range works:
a. Pick C so that almost all gradients are clipped, which corresponds to a
biased, but less noisy update
2. Normalize the update to decouple learning rate from C
3. Under fixed €(g, B, T), spending more compute helps compared to non-DP setup:
a. Fixing B, more steps T and correspondingly larger o usually helps
b. Fixing T, larger batch size B and corresponding larger o usually helps

See: Scaling Laws for Differentially Private Language Models (McKenna et. al, ICML'25)



https://arxiv.org/abs/2501.18914
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Inference-only methods

- Does not require a custom DP-SGD
Implementation or access to model
weights.

- Operates on top of an existing
inference stack.

- Faster iteration but worse quality

Analogous to tradeoffs between
finetuning/prompt engineering.

Private evolution (API access)
DP inference (/logits access)

Private dataset

“Give me a dataset like this one”

LLM

DP synthetic dataset
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Private evolution

Starting from a seed of entirely synthetic corpus,

Then alternate between:
(A) filtering down to the examples most similar to private data; and

(B) expanding the corpus with LLM rewrites
Only place private data is used: finding the most similar data.

Best for low target epsilon/low private data volume scenarios
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Private evolution

Private

HDDDD

S DP histogram

(1) Private examples vote for
closest synthetic example
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Private evolution

(2) Keep most similar
synthetic examples

Private m

|
|
: Filtered

' Synthetic
H U oe '

DP histogram

Synthetic

(1) Private examples vote for
closest synthetic example
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Private evolution

(2) Keep most similar
synthetic examples

Private m

|
|
: Filtered i & .
D D: Synthetic LLM Rewritten
= Synthetic

SYLIEE DP histogram

(3) Expand with rewrites
(1) Private examples vote for
closest synthetic example
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Private evolution

Private

Synthetic

HDHDD

DP histogram

(1) Private examples vote for
closest synthetic example

(2) Keep most similar

synthetic examples

Filtered
Synthetic

W

LLM

Rewritten
Synthetic

(3) Expand with rewrites

(4) Repeat
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Private evolution

lteration O lteration 4 lteration 9

y -

0 200

Density

Length

Source: Differentially Private Synthetic Data via Foundation Model APIs 2:
Text (Xie et al., ICML’24)



https://arxiv.org/abs/2403.01749
https://arxiv.org/abs/2403.01749
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Private evolution

1. Some prompt engineering required:
- Seed corpus generation
- Rewrite prompt should introduce appropriate amount of variation



Google Research

Private evolution

Seed corpus prompt Rewrite prompt

SYSTEM: You are required to write SYSTEM: You are a helpful, pattern-following assistant.
an example of review based on the

provided Business Category and USER: Based on the Business Category and Review
Review Stars that fall within the Stars, you are required to fill in the blanks in the Input
range of 1.0-5.0. sentences. If there are no blanks, you are required to

output the original Input sentences.
USER: Business Category: {label_1} |

Review Stars: {label_2} with keyword Business Category: {label_1} | Review Stars: {label_2}
{subcategory} Input: {masked_input}

(subcategories generated by LLM)

Source: Differentially Private Synthetic Data via Foundation Model APIs 2:
Text (Xie et al., ICML’24)



https://arxiv.org/abs/2403.01749
https://arxiv.org/abs/2403.01749
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Private evolution

1. Some prompt engineering required:
- Seed corpus generation
- Rewrite prompt should introduce appropriate amount of variation

2. Private data can be highly ephemeral or kept on-device

3. Private post-processing: the first 2 steps of PE (voting and filtering) can
be used standalone to improve DP finetuning outputs.
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DP inference

Introduces DP during the language model decoding process, by:
(1) distributing private data into generation prompts in parallel; and
(2) mixing their output predictions.

Privacy costs are paid per token generated.

Best for generating a small amount of examples quickly.
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DP inference

Idea: Prompt the LLM to generate synthetic data from real data.

Generate caption similar to:
“Umar Syed visits a farm”

Problem: LLM can reveal private information.

\4

LLM

Y

“Umar Syed visits an orchard”
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DP inference

Observation: LLM responses are generated randomly, one token at a time.

Solution: Mix token distributions across parallel LLMs running on different
inputs, which reduces dependence on any one input.

Generate caption similar to: “Caption #1”

Generate caption similar to: “Caption #2”

Y

LLM

Generate caption similar to: “Caption #3”

LLM

,--- Mix token distributions

4

Synthetic caption similar to

LLM

input captions, but not like
any one of them.
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N

(4 N

@ Apply prompt templates.
template: | “Generate text similar to: ”

A N

B el Generate text similar to: | Today, the S&P 500. .. P,
R~ . | _Generate text similar to: | Fed chair Powell says... | P> LB .
— Generate text similar to: | Q4 earnings reports. .. P )
S

sensitive text Generate business news. | P pjic
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(
@ Apply prompt templates.

template:

“Generate text similar to:

»

sensitive text
\

.

Generate text similar to:

Today, the S&P 500...

————— . | Generate text similar to:

Fed chair Powell says. ..

Generate text similar to:

Q4 earnings reports. ..

Generate business news.

o

P ublic

@ Initialize synthetic text.

synthetic text so far x: | “”

/
(@ Concat x and get next token logits.\
~
1 | 3 | zl
=L{1 ] T Z,

——1ni1

S next token logits y
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-
@ Apply prompt templates.

template: | “Generate text similar to:

»

.

@ Initialize synthetic text.

synthetic text so far x:

CCr»

o

(@ Concat x and get next token logits.\
e

Z_ ..
public
next token logits

P

D Generate text similar to: | Today, the S&P 500. .. P, k . —
y —» | Generate text similar to: | Fed chair Powell says. .. P, . S =L'-| T T
—_——
— Generate text similar to: | Q4 earnings reports. .. P ) l
R
sensitive text Generate business news. | P pjic @ -
N X,
- ) B
Sample the next token and append. = &
@ P PP @ DP sample token from sensitive logits.
Z= clip_and_aggregate(zl, Zy ..., Z'SI)
X 1~ softmax(Zz)
. N\ J
X Jixi — x
new synthetic text so far
\ _/
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(
@ Apply prompt templates.

template: | “Generate text similar to:

»

@ Initialize synthetic text.

synthetic text so far x: | “”

. /
Z - o)
| Concat x and get next token logits.
o ] | (@comann
N Generate text similar to: | Today, the S&P 500. .. 1 : = z,
~— ) _, | Generate text similar to: | Fed chair Powell says... | P> LK =Ll1 T T Z,
B Generate text similar to: | Q4 earnings reports. .. p| sl l zISI
N Z ubli
- - public
GCHSIthC text Generate business news. | P pjic L @ — nexttoken logits y
: )
Sample the next token and append. [ - e
@ P PP @ DP sample token from sensitive logits.
Z = clip_and_agg regate(z], Zy ., zlSI)
X 1~ softmax(Zz)
x |lx; — X
£20 Go to @ and
new synthetic text so far repeat.
\_ i
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(
@ Apply prompt templates.

template: | “Generate text similar to:

»

.

m N

B el Generate text similar to: | Today, the S&P 500. .. P,

y —» | Generate text similar to: | Fed chair Powell says. .. P, L

—_——y

— Generate text similar to: | Q4 earnings reports. .. P )

e

sensitive text Generate business news. | P pjic
-

@ Initialize synthetic text.
synthetic text so far x: | “”

i
(@ Concat x and get next token logits.\
e
1 | 3 | zl
=Ll1 ] T Z,
zZ
| S
L next token logits y
~

(
@ Sample the next token and append.

-
@ DP sample token from sensitive logits.

z"= clip_and_agg regate(z], Zy - z|S|)

~

Is Z ) ublic similar to z , z, ..., ZISI? e _
yes l \ 3 softmax(Zz)
@ Sample token from public logits. ;\?5{.

X )~ softmax(zp

ublic) s PN

=

e ———

new synthetic text so far

£ Go to @ and

repeat.

B
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DP inference

Algorithm 2 DP Inference

Vocabulary X, set of all strings X'*, set of token probability distributions A(X).
For a,b € X*, ab denotes concatenation.
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DP inference

Algorithm 2 DP Inference

Vocabulary X, set of all strings X'*, set of token probability distributions A(X).
For a,b € X*, ab denotes concatenation.

1: Input: LLM: X* — A(X), private prompts D) ... 2™ € X* response
length T
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DP inference

Algorithm 2 DP Inference

Vocabulary X, set of all strings X*, set of token probability distributions A(X).
For a,b € X*, ab denotes concatenation.

1: Input: LLM: X* — A(X), private prompts D) ... 2™ € X* response
length T

2: 84 () Initialize the response
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DP inference

Algorithm 2 DP Inference

Vocabulary X, set of all strings X*, set of token probability distributions A(X).
For a,b € X*, ab denotes concatenation.

1: Input: LLM: X* — A(X), private prompts D) ... 2™ € X* response
length T

2: 8¢ For each token of the response
3: fort=1to 7T do
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DP inference

Algorithm 2 DP Inference

Vocabulary X, set of all strings X*, set of token probability distributions A(X).
For a,b € X*, ab denotes concatenation.

1: Input: LLM: X* — A(X), private prompts D) ... 2™ € X* response
length T
s+ 0
. fort=1to T do

for:=1tondo
p\Y « LLM(z®s)

o e

Get next token predictions for each
element of the batch
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DP inference

Algorithm 2 DP Inference

Vocabulary X, set of all strings X*, set of token probability distributions A(X).
For a,b € X*, ab denotes concatenation.

1: Input: LLM: X* — A(X), private prompts D) ... 2™ ¢ X* response

length T
2: S(—@
3: fort=1to 7 do
4: for:=1ton do

5 pY « LLM(z®s)

6 Ty 4— DPTokenSelect(pil), ol pin))
f = 8 < 8T;
8: return s
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DP inference

Algorithm 2 DP Inference

Vocabulary X, set of all strings X*, set of token probability distributions A(X).
For a,b € X*, ab denotes concatenation.
1: Input: LLM: X* — A(X), private prompts D) ... 2™ ¢ X* response
length T
2: 8 ()
3: fort=1to T do

4 for i(z.f 1tondo e paid for this token, accumulate T times
i pf : LL

D

6: Ti DPTokenSelect(pél), e pgn))
7: S &— SI;
8: return s




Token aggregation in DP inference

Many possible choices for the token aggregation function:
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a. Average the probabilities and add noise (Gaussian mechanism)
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b. Each prompt returns top token, return noisy top choice (PATE)



Token aggregation in DP inference

Many possible choices for the token aggregation function:
a. Average the probabilities and add noise (Gaussian mechanism)
b. Each prompt returns top token, return noisy top choice (PATE)

c. Softmax sampling from averaged, clipped logits (Exponential
mechanism)



Token aggregation in DP inference

Many possible choices for the token aggregation function:
a. Average the probabilities and add noise (Gaussian mechanism)
b. Each prompt returns top token, return noisy top choice (PATE)

c. Softmax sampling from averaged, clipped logits (Exponential
mechanism)

Z + {logits(px) : p € S}

Z < % ZzeZ Clipc(z)
x ~ softmax(z/7)

clip_(z), = max(-c, min(c, z)))
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Token aggregation in DP inference

Softmax sampling: Token i sampled w.p. ~ exp(Z;/7)
£-DP exponential mechanism: 7 sampled w.p. ~ exp(score(z,S) - £/2A)
A = max; maxg g |score(i, S) — score(i, S")|

Z <+ {logits(px) : p € S}

7 % Y zcz clip.(z)
xr ~ softmax(z/7)

clip_(z), = max(-c, min(c, z)))



Google Research

Token aggregation in DP inference

Softmax sampling: Token i sampled w.p. ~ exp(Z;/7)
£-DP exponential mechanism: i sampled w.p. ~ exp(score(z, S) - £/2A)
A = max; maxg g |score(i, S) — score(i, S’)|

Let score(i, S) = zi 1= [2 ), _¢clip.(2));

A=c/s
exp(Z;/7) = exp ()((z/,s) - 2(¢/s) - %)
Z <+ {logits(px) : p € S} o o0
B 1 - ‘ = exp(score(i, S)/2A - —)
Z < <Y ,czclip.(z) ST
x ~ softmax(z/7) = 2c¢/sT-DP

N

c=10,7=2, s =100 = ¢ =0.1

clip_(z), = max(-c, min(c, z)))
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Unified view of methods

Start from a non-private approach to generate synthetic data

DPify an iterative primitive used to extract information from real data

DP finetuning

Private evolution

DP inference

Comparison Finetuning Evolutionary Inference
prompting
Primitive Gradient Selection Token sampling

- Amenability to DP: primitive is an aggregate function with bounded

sensitivity

- Privacy guarantee of primitive => privacy guarantee of iterations
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Rough comparison of methods

Recommended when

your input size is ...
Yield

Access required
Training required?
Prompt engineering

Inference cost

OOD Adaptability

Data persistence

DP finetuning
>T10K

Infinite
Weights
Yes

No

1

High

Entire dataset

required for training.

Private evolution

<5k

<= input data size

API
No
Yes
Batch size

Low

Ephemeral/stays on
device (votes only)

DP inference

Not recommended

Tk ~> 25 examples
Logits

No

No

rounds X rewrites

Medium

One batch at a time
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Summary of comparison of methods

DP finetuning is the workhorse method that delivers the best quality given
sufficient data, compute, model access, and engineering effort.

Since the adoption of DP synthetic data is often quality-bottlenecked, this is
likely the option that best fits your needs.
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Summary of comparison of methods

DP finetuning is the workhorse method that delivers the best quality given
sufficient data, compute, model access, and engineering effort.

Since the adoption of DP synthetic data is often quality-bottlenecked, this is
likely the option that best fits your needs.

Private evolution is most useful when the stringent (¢<1) required or small
data.
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Summary of comparison of methods

DP finetuning is the workhorse method that delivers the best quality given
sufficient data, compute, model access, and engineering effort.

Since the adoption of DP synthetic data is often quality-bottlenecked, this is
likely the option that best fits your needs.

Private evolution is most useful when the stringent (¢<1) required or small
data.

DP inference is useful for generating a small amount of examples quickly.
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Utility Metrics

The best utility metric is downstream task performance, since that is
why you are generating synthetic data to begin with.

There are proxies that can be helpful:
- Heuristics: n-gram statistics, length distribution
- MAUVE score measures distributional similarity
- Real and synthetic dataset are embedded and clustered together.
MAUVE is high when clusters contain a mix of real and synthetic.
- Correlates with downstream task performance.
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ic images

DP synthet
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Image data...

- Image data is ubiquitous

- Image data has large body of work on image
generation (starting from GANS)

- Image data is very hard to synthesize properly

- DP image synthesis brings it to the next level!

Images are hlgh dimensional. Captu ring the "Unsupervised Representation Learning with Deep Convolutional Generative Adversarial
intricate distribution of natural images requires eersr e adlord Fue et Somi S, 29
complex models. DP on more complex models
results in more noise
There is a "continuity" of images in many
directions (not just 1 as in text!)
Computation cost of DP is going to be high for
large models

- And models like GANs (adversarial training)

are harder to train with DP

Ut|l|ty evaluahon d|ﬁ|CU|t|eS metnCS ||ke FID S(i)f;lfion Models Beat GANs on Image Synthesis, Prafulla Dhariwal, Alex Nichol,
don't always correlate well with downstream
performance



https://arxiv.org/search/cs?searchtype=author&query=Radford,+A
https://arxiv.org/search/cs?searchtype=author&query=Metz,+L
https://arxiv.org/search/cs?searchtype=author&query=Chintala,+S
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What is appropriate privacy unit for image data

- Most academic works treat each image as a privacy unit (example-level privacy unit)
- In this setting, DP synthetic data will loosely guarantee that it won't be very different whether a particular
image was in your private dataset or not
- In real world applications, it is perhaps not that needs to be done
- Most of the time you will want at least user-level privacy
- My synthetic data is not significantly different, whether a particular user contributed their data to my
private dataset or not
- The definition of a "user" is however application dependent
- User can be a creator of an image
- Users can be people present on the photos
- Bottom line:
- For each image define one or more "users" associated with the image
- Do appropriate user contribution bounding (e.g. 1 image per user)
- Proceed as if you had a example level privacy unit
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What are the methods for DP image synthesis

- DP training (from scratch) or DP-Finetuning
- GANSs, VAEs

- Multimodal LLMs, Diffusion

- Inference only/AP| based methods
- PATE-style
- Private evolution

- Data release mechanisms have not been successful so far
-  They attempt to calculate some statistics or intermediate representations of the data, dp-fy that and

generate the images from noised representation

-  Examples include DPGEN (Chen et al, 2022b) that was shown to be not proper DP
- DP-DRE (Wu et al, 2023) which uses publicly pretrained encoder and ICGAN generator. Private data

is embedded via an encoder and the distribution is DP-fied via DP density estimator. Samples are
then drawn from this distribution and decoded via ICGAN
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DP Training/finetuning for Image generation: GANs

e GAN models
o First somewhat successful models in image synthesis
o To obtain DP version of GANs, DP-SGD (and likes) is used to
update the discriminator parameters (DPGAN Differentially
Private Generative Adversarial Network )
e DP-Training of GANs is hard
o GANSs are notoriously hard to train (diverge, require early
stopping)
o Early DP GANs struggled to generate good images below low
resolution like 32x32

Is real or fake

!

Discriminator

AN

Fake G(z) Real X

t

Generator

t

Noise 7

Source:
https://en.wikipedia.org/wiki/Generative adversarial
network#/media/File:Generative adversarial network

.svg
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https://en.wikipedia.org/wiki/Generative_adversarial_network#/media/File:Generative_adversarial_network.svg
https://en.wikipedia.org/wiki/Generative_adversarial_network#/media/File:Generative_adversarial_network.svg
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DP Training/finetuning for Image generation: GANs

e Several attempts at improving DP-GANs
o DP-finetuning of publicly pre-trained GANs
m DP-GAN-MI (Chen et al 2022) uses publicly pre-trained feature extractor
m DP-DRE (Wu et al) uses publicly trained encoder (and also does DP-SGD on
GAN)
o Alternative losses
m DP-Sinkhorn (Cao et al 2021) uses optimal transport based loss (Sinkhorn
divergence, measuring the distinct between real and synthetic distributions)
m GS-WGAN (Chen et al 2020) uses alternative loss (Wassertein-1 loss) that
generated bounded gradients with norms near 1. This allows to assume
clipping norm of 1 and forego hyperparameter search
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DP Training/finetuning for Image generation: Diffusion

e Diffusion models are state of the art for high fidelity image generation

e Brief intro from (dp-promise: Differentially Private Diffusion Probabilistic Models for Image Synthesis )
o Forward diffusion process (multi step): gradually adding noise to the data
o Markov chain {x0, x1, .. xT}

g(xW =) = Al(x); /1 - BV BI), (1) o =TT'_, (1 —Bs).

T
g(xV) x2) . xD|x0) = Hq(x(’) L=ty (2) x) = /ax® + /1 -0z,
= & N(O,I)

o Reverse sampling (multi step, Markov chain): learning to reverse this process via a model, starting
from noised images produced in the forward pass (DP-LDMs, Liu et al 2023) to produce the original
image

m Predict the noise distribution from t to t-1, recover x_t-1 by removing the noise
m Model Z theta learns to predict the noise injected from 0 to t =>derive the mean of the noise
m Objective to learn Theta uses samples from iterative forward process

- A(I) - = A
argminE, ), [”Z—Ze(\/ax(o)+ l—oc,z,t)H%], #t-1) _ \/_Olr_x v 1—o,zg(X

0
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DP Training/finetuning for Image generation: Diffusion

e DPDM (Dockhorn et al 2023) - DP SGD
applled tO DifoSiOﬂ "This woman has brown hair, and "This man has sideburns,
e DP-LDM (L|U et al 2024) blaclf h;iiir: jgh'eli's fit.t‘i"(za:cti\fe and mustache."
o Prompt or label conditioned s’ oo
o Train an encoder-decoder on public
data
o Use the encoder to reduce the
dimensionality on private data
o Train a diffusion model with
DP-SGD on lower dimensionality
representation
m Key is reduction in
DP-finetunable parameters :
authors fiinetune only attention
modules
o Decode back
o Able to generate 256x256 images

Figure 3: Text-to-image generation of 256 x 256 CelebAHQ with prompts at ¢ = 10. FID: 15.6

DP-LDMs: Differentially Private Latent Diffusion Models Michael F. Liu,
Saiyue Lyu, Margarita Vinaroz, Mijung Park
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DP Training/finetuning for Image generation: Diffusion

e Common themes are similar to DP-training of LLMs for text
o Reducing the number of parameters finetuned with DP
m Some also reduce the input dimensionality (Liu et al 2024 DP-LDM)
o Using publicly pretrained Diffusion models (e.g. ImageNet pretrained

m Privimage (Li et al 2024) subselects the public data closest to the private data via clip embeddings
for pretraining

m DPRandP (Tang et al 2023) pretrain on synthetically generated random data

m Park et al (2024) use small related public dataset, boost it with Diffusion models, and then pretrain on
the combined set

o Leveraging inherent Diffusion noise

m \Wang et al (dp-promise) argues that Diffusion models already add noise during forward process
m This noise should be used to give DP guarantee (instead of introducing additional noise via DP-SGD)
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DP Training/finetuning for Image generation: Diffusion

e DP-Promise leverages the fact that we already introduce noise during

the forward stage of diffusion which contributes to privacy.

e Gradients calculated on noise injected images from Diffusion forward
pass are noisy already having similar effect as DP-SGD => we can

use less noise during DP-SGD
e Intuition: Earlier interactions of the forward are less private (less

noise has been added), as we get to T iterations, it is mostly all noise

e Introduce two stage process for Reverse sampling

O

Phase 1: non dp training (DP from forward noise) [S, T]
(sensitivity is by 2sqgrt(d), d is channel x height x width)
Phase 2. DP-Training steps [1, S-1] (sensitivity is bound with
clipping)

Clean Grddlcnts

: More Noise Private Network ' Poor Trade-off
I Train ‘0 a’I)

I DP-SGD l U"da“

| Based Utility
| Methods Paramclus pm acy

I

= = :'. Lo s e o . e et o e o .':.._—._T_.‘

: Noisy Gradients Less Noise Private Network |

. (0 1) | Better Trade-off
i ‘ TN
Paramclcrs

Privacy A Utlity

i promise ﬁ Backpropagation

Noisy Images

Private Images
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1

I

|

1
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i Diffusion
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Figure 1: Comparison between dp-promise and other DP-
SGD-based approaches for differentially private image syn-
thesis using DMs.

dp-promise: Differentially Private Diffusion
Probabilistic Models for Image Synthesis, Wang et al,
2024

https://www.usenix.org/system/files/usenixsecurity24
clidac_wana-bhairchan nAdf
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DP Training/finetuning for Image generation: Diffusion

e DP-Promise

I ciinsioiis . siiimenh e S| - . T e | Sensitive Forward Process
: 1 1 E 1 2 I - — — — — —
: g = V9l 0 - ,)g : EE g = V()l g - (hpC'( ) + N(O g I)) 0 - 7’9 E Private Forward Process
H N I:
1 Ty - ‘ ..................... s
: EEAtEnE. ... - - e e e e e Gradient |': 1| Gradient : oo Gradient |1} - -
| -»> P s .S Sensitive T Process
: 1 | Calculation Descent : : :E Calculation gl Lo " | Descent i :_njl_,ie_ _"_“fl_nf___ig_q__
l-- —————————————————————— ! - E: ----------------------------------------------------------- : E Private Training Process
: A Al A A Al Al A :
P 2 B i | i i | % .
: A R A iV i v iV iV
: \_/ \_/ \—/ \—/ \_/ \_/ \_/ Private Dataset [)
? ? ? wnh Sensitive Information
< o i o Forward
Process
................ (0) D
z(5—1) T T || q(:c(t)|x(0))

Figure 2: Framework of dp-promise, which aims to provide privacy guarantees to private data during the training of DMs.
"Sensitive" means there is a risk of privacy leakage, and "Private" means privacy guarantees exist.

dp-promise: Differentially Private Diffusion Probabilistic Models for Image Synthesis, Wang et al, 2024
https://www.usenix.org/system/files/usenixsecurity24_slides-wang-haichen.pdf
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DP Training/finetuning for Image generation: Diffusion

e DP-Promise

dp-promise: Differentially Private Diffusion Probabilistic Models for Image Synthesis, Wang et al, 2024
https://www.usenix.org/system/files/usenixsecurity24_slides-wang-haichen.pdf
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Inference only methods

e DP-Training/finetuning is computationally expensive AND requires access to model checkpoint weights
e Attempts at introducing DP at the inference only have been made for Image modality
o PATE style models (Private Aggregations of Teacher Ensembles) (Papernot et al, 2017)
m Split the training data into a number of disjoint datasets
m Train a model (or finetune a model) on each of them
m Introduce the noise for DP guarantee to their aggregated prediction, level of noise depends on the
level of agreement between the models
o PATE-GAN (Yoon et al, 2019)
PATE part is applied to discriminator
Private data is partitioned
A number of discriminator models are trained
A student discriminator model is trained using teacher's DP-fied predictions (on some public data or
data generated by the generator itself)
m Generator tries to fool the student, student tries to improve its loss wrt teachers and teachers are
trained to improve their loss wrt generator
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Inference only methods

o G-PATE (Long et al, 2019)
m Don't need the student
m As long as the gradients of the discriminator are DP, we are good
m A gradient aggregator gets gradients from the teachers and accumulates them in PATE-style before
passing DP gradient to the generator for update
m Better quality images for small budgets (eps <=1)
o PATE-TripleGaN (Jiang et al , 2024 ) is probably one of the most modern twists on PATE idea

The bottom line: The quality is still nowhere near the Diffusion style models (eps 10)

PATE-TripleGAN: Privacy-Preserving Image Synthesis with Gaussian Differential Privacy Jiang Zepng, 2024
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Inference only methods

e Private evolution
o Use inference only access to generative models
o Needs a good embedding (e.g. CLIP, Inception Network etc)
o Variation APl and Random API (usually already available in models like DALL-E, Stable Diffusion or can
be implemented with appropriate prompt engineering (e.g. GPT models). APIs can be conditioned with
prompts

Algorithm 4 Streamlined Private Evolution for Image (PE, Lin et al. (2023))

Input: Private data D, image embedding model ® (e.g. CLIP, Inception), target number
of synthetic samples N, evolution rounds 7', population size multiplier L (number of
variations for each synthetic image).

Output: Synthetic dataset D.

1: Initialize Do of size L x N with Random APIL.

2tort =0 T'—1do

3 Et = (I)([)t) /Embedding calculation for synthetic samples.

4: Let each ®(z), z € D vote for the nearest embedding in Ej.

5 Privatize the voting results with (s,4)-DP to get a DP histogram H;.

6: Ht — H,/sum(H,) Histogram normalization.
T Get ﬁ; sample N images with replacement from D, proprotionally to H,.
: if t <7 —1 then
9: Get ﬁ,H of size L x N: call Variation API to get L variants for each z € b;
10: else

11 return D;
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Inference only methods

e Private evolution for images
o Some secret sauce includes "look ahead" distance (distance for computing real to synthetic is calculated via getting
variants of synthetic and calculating average distance to those variants)
o For user level privacy unit - normalize the vote for the samples for the same user to be 1 (in 12 norm)
e Beauty of PE is
Computationally cheaper (still needs a lot of inferences, but does not do DP training)
Quality will be fantastic (fidelity? Perhaps not)
Private data is never used for finetuning (no risks of outputting it back at all)
The only method that can work with small amount of private data
Cheap from DP perspective (can allow small epsilons)
Is a general framework (Foundational models can be replaced with Synthesizers (e.g. SIM-PE paper)
e Downsides
o Private data needs to be in distribution for the foundational model
o Heavily depends on the quality of the initial synthetic set, embedding and variate apis

o O O O O O

Real Generated ((6 62,1072)-DP) Real Generated ((6.62,10~2)-DP)

DIFFERENTIALLY PRIVATE SYNTHETIC DATA VIA
FOUNDATION MODEL APIS 1: IMAGES Zinan Lin et al,
2024

Flgure 8: Real & generated images from Cat Cookie (left) and Cat Doudou (rlght) More in App. L.
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Metrics for evaluating quality of synthetic Image data

e Utility metrics are pretty much the same for all data modalities
o Train some downstream model (Machine Learning efficiency)
e Fidelity metrics
o Inception Score (Khetan & Oh, 2016)
o Frechet Inception Distance (FID) (Heusel et al, 2017)
o Mauve (Pillutla et al, 2021) using an appropriate embedding
m Seeks to trade off type | and type |l errors
m Induces the same ordering as FID and just as FID accounts for both quality and diversity of synthetic
data
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Comparison

Aspect

DP-finetuning
(GANSs, Diffusion)

Method
PATE-GANs

Private evolution

Amount of input private data

Small input quantity Not recommended Not recommended Preferred

(<5K)

Large nput quantity Preferred Recommended Not recommended
(>10K)

Reliance on Pre-trained Models / Public Data

Can benefit from addi-

tional public data

Yes both for Diffusion
and GANs

Distilling PATE teach-
ers into students can uti-

lize public data

Needs pretrained mod- Yes for Diffusion, mod- No Implicit (via Foundation
els els should be pretrained Model APT)
to improve quality.
Yield
Unlimited number of Unlimited number of In practice, suitable for
output examples, al- output examples, al- outputting synthetic

though with diminishing
returns to downstream
task performance.

though with diminishing
returns to downstream
task performance.

dataset of size < size of
input private dataset.

Model access required

Weights

Weights of Generator
and Student network
and a number of teach-
ers

Generations via API

Compute resources and engineering effort

Training of generative
models is required

Yes, 1

Yes, training a Genera-
tor, A number of teacher
discriminators and a dis-
tilled student discrim-
inator, in alternating
fashion

Inference cost multiple
per synthetic example

1 (same as regular infer-
ence).

x (number of PATE
submodels to aggregate

x (number of iterations)
% (number of variants

over). per sample).
Prompt engineering re- No No Possibly — if using mul-
quired timodal (text, image)

models, potentially need
to craft prompts for ini-
tial pure synthetic data
and variate templates.

Time to first example

Long (Run finetuning on
the entire dataset, then
sample)

Extra long (train mul-
tiple models on dis-
joint subsets, infer on
all of the models to
get pseudo labels, distill
into a student model, re-
peat the process for a
number of iterations af-

el [ ROy

VGRPEY 3 SRRy |

Medium (Might require
prompt engineering 4
running variate and em-
bedding on the entire
private dataset)
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Comparison....or, just tell me what to do!

e Forlarge enough volume of sensitive data (>XXK datapoints) with enough compute
the method that results in highest fidelity and utility of DP synthetic data is almost
always DP-Finetuning of pretrained Diffusion models.

e Less computationally expensive methods like PE that don'’t require finetuning can provide reasonable data
when sensitive data is somewhat in distribution for the pretraining data or for situations when were strict
privacy guarantees (low €) are needed.

e PE is "safer" and easier to explain but DP finetuning will have much higher fidelity of the data

Final Word: We still got a long way to go in DP synthetic IMAGE land
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DP synthetic tabular

data

Month of July

Purchase
groceries
new clothing for me

new clothing for kids

car lease

Derived Utility Did | need it
useful, kept me alive totally
immense not at all
useful totally
essential totally

Comment
kept us alive

Avoids CPS knockig on my door
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Tabular data and privacy unit

e One of the "oldest" type of data organization
e DP synthesis of tabular data has been explored extensively in academia in the last two decades
e Tabular data is the only one type of data that comes with theoretical guarantees on its performance (if
marginal-based methods are used)
e Privacy unit
o Usually row-level (example level). If user level, it is assumed that each user contributed at most 1 row
o DP synthetic data then is expected to be approximately the same, whether a particular row was in the
dataset or not
o When each user contributes x rows, one can create an aggregate row or use group privacy (aiming for
e/x and 0/x with per example PU in order to achieve (g, O) user-level privacy unit
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Tabular data: types of methods

e \Workload based methods and generative Al methods
e \Workload based
o Extremely powerful
o Based on aligning statistical queries (like marginals) on real and synthetic data in DP manner
o Have been explored in context of query release:
m Query release - the task of creating useful synthetic data that gives accurate answers to a number
of predefined statistical queries performed on this data, e.g. sums and counts
Still end up being useful for training downstream models!
Query workload: determines which statistical properties (often low dimensional marginals like counts)
are most important to preserve from the original dataset, allow to better allocate privacy budget
m Goal of query release - error over the finite set of queries is bounded in expectation by alpha
e P is often infinity in theoretical literature (so worst case query error is bounded), and 1 or 2 in

practical literature
f: X~ {01}

Err,(A, D) :=E

13~A(1.))[ "'F(ﬁ) —f(D)H,,] < a,

F(D) = (f(D))ser
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Tabular data: Workload based

e \Work on categorical features with a finite domain of values
m Need to have all numerical features discretized

o Most of the approaches are working on histogram representation of the dataset (either explicitly materialized
or implicit)

o To get back from the histogram to synthetic data, the easiest way is to turn histogram into probability
distribution (normalize the counts) and sample the values accordingly to this probability distribution

Age Occupation

0-10 baby 0-10, baby 0-10, toddler  10-20, student 10-20, nanny
10-20 student L ! 2 ‘
10-20 nanny

0-10 toddler

10-20 student
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Tabular data: Workload based

A lot of practical and theoretical algorithms fall into Select-Measure-Estimate Paradigm which decomposes the
challenge into a sequence of more tractable problems, decoupling the task of query selection from data

!

Queries
(Marginals)

Select
-

|

E ~—
! Measure Estimate Generate sy
> > ‘, > U

Gaussian I o N n Randomized
= Mechanism |I|| ‘V Private-PGM ‘ ‘ Rounding U
- - Noisy Marginals Graphical Model Synthetic Data

Sensitive Data
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Tabular data: Workload based

Red steps need to
be with DP
e Select - chose collection of queries to measure on private data

e Measure - queries are executed and carefully calibrated noise is added to ensure DP (often via Gaussian)

e Estimate - Most computationally expensive. Takes noise, often inconsistent measurements and builds
probability distribution over the entire data domain that best explains them. Often MLE estimation to
minimize the L2 distance for noisy measurements. Can be iterative process itself

e Repeat - in adaptive algorithms like MWEM, the info about current distribution is used to select next queries,
often the ones with the highest error, focusing the privacy budget where it is most needed

!

Queries
(Marginals)

@ Select

¢:.

Measure @ Estimate Generate

Gaussw_ln I . Private-PGM Randomized
Mechanism I || N\ Rounding

Noisy Marginals Graphical Model Synthetic Data

(((0

(-

Sensitive Data
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Tabular data: Workload based

e Select - information that is never measured can't be preserved

e How to select the queries to measure is the most important choice
o Workload awareness: chose marginals to measure that are most important for user provided workload

queries
m AIM, MWEM+PGM, RAP

m Agnostic: MST, PrivBayes
o Data awarness: how much the strategy adapts to statistical properties of the data
m PrivBayes and MST use a portion of the privacy budget to learn a dependency structure from the

data,
m AIM and PMW - more advanced form of data-awareness

o Budget-awareness - intelligent allocation of privacy budget
m E.g. Larger budget allocated can allow better measure higher-dimensional marginals

PrivBayes and PrivSyn are budget-aware (adjust the number and size of marginals based on the

total budget)
AIM uses annealing procedure adapting per round budget: if the model accuracy does not improve,

it increases the budget for subsequent iterations
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Tabular data: Workload based

e Select - information that is never measured can't be preserved
e How to select the queries to measure is the most important choice

o Computation Awareness: selection of marginals determines the structure of models that will be
appropriate at estimation step

m MST, PrivMRF, AIM - greedily add marginals only if they don't violate a constraint on the complexity
of the resulting graphical model

e AIM (McKenna et al 2022) algorithm demonstrates awareness of all these 4 criteria
o W._ris workload awareness (weighting by the relevance to the user task)

o Error |M,.(D) - M,(p,—1)|| provides data awareness by measuring the deficiency of the current
data-dependent model

o Noise penalty \/2/7 x oy x n. - budget awareness

qr(D) = w, X (||M,(D) — M,(p-1)|h — V2/7 X 0y X n,.)
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Tabular data: Workload based

e Estimate - given a vector of noisy measurements y, find p that best explains these observations, p is of the size of
data universe (all possible histogram bins). Framed as L2 minimization problem
o Dimensionality of search space is exponential
o Private-PGM (McKenna et al, 2019) uses probabilistic graphical models
m Insight: when the measurements are a set of low-dimensional marginals, an optimal solution to the L2
minimization problem is guaranteed to be a distribution that can be represented by a PGM whose
structure (i.e., its factors) is determined by the measured marginals.
m Optimizing over the parameters of this compact graphical model, Private-PGM can achieve exponential
savings in computation.
m Cons: scalability: the computational cost is tied to the graph’s treewidth, making it intractable if the
measured marginals induce a dense dependency graph.
o If you relax global consistency (that PGM satisfies), Approx-Private-PGM (APPGM, MCKenna et al 2021) or
Gradually Update Method (GUM, Zhang et al, 2021) are more scalable
o RAP (Relaxed Adaptive Projection, Aydore et al, 2021) uses relaxed tabular representation amenable to
gradient-based optimization (lacks formal guarantees, non convex)
o GEM (Generative networks with Exponential Mechanism, Liu et al, 2021) parameterizes the distribution with a
neural net (lacks formal guarantees, non convex)
o Recently: GREM (Gaussian Residuals-to-Marginals, Mullins et al 2024) - proposes to reconstruct marginals
not from noisy measurements of other marginals but from noisy measurements of the residuals
e Design tension between rigor and scalability
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Tabular data: Workload based

An example of successful algorithm

Algorithm 3 Private Multiplicative Weights Update Method

Input: Private dataset: D € X", query workload: finite set F C {0, 1}, stepsize n > 0.
Output: Privatized histogram: h € RY, ||h||; = n, representing DP synthetic tabular data

1 n
: B — &
h™

2: fort=1toT do

—

3: Select worst performing query f, that approximately solves max . |(h* — h(D), f)| (in DP
manner), together with v, private estimate of query error (h* — h(D), f;)
4 if |v;| < @ then return h = h'
S else ( l
. h; - exp(—nsgn(ve) fi(x)))
6: At = pi > )sex

ZyEX h:, exp(—nsgn(ve) fi(y))
return h = + Ykt

=1
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Tabular data: Modern generative models based

e Early attempts at using end-to-end generative models looked into GANs and VAE
o Empirical evaluation (Tao et al 2021) showed that they perform worse than marginal/workload based
methods
e Diffusion based: TableDiffusion (Truda et al, 2023)
e Autoregressive models based
o DP-TBART (Castellon et al, 2023)

Custom LLM-like architecture: 3 layer decoder, not pre-trained

Custom tokenizer which assigns different tokens to each column's distinct values , so no two
columns encodings share the same tokens

Each row is encoded as list of tokens (assuming some fixed ordering), column names are not taken
iInto account

Trained with DP-SGD

During sampling, postprocessing is employed to remove all unallowed tokens for each column

AIM (workload based) outperforms it

Construct synthetic datasets to demonstrate that the DP-TBART outperforms AIM when there are
complex interactions between columns and we need much higher order marginals
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Tabular data: Modern generative models based

e Autoregressive models z, | | Z; zs
o TabularARGN (Tiwald et al 2025) emheddifg layer 1| [embeddifg layer 2| rembe«ldifg layer 3
m Don't use transformers to model joint distribution I
m Propose a multi tower model with each tower 7e’*‘°i*'°'="
dedicated to each column permutation masking layer |
m Before the towers, dedicated embedding for each /l
column 0.,,,0...,,0 le-,. 0., [es 0000,
e Embeddings are combined (with some .-agressolr block 1 mgmmlr block 2 mgmm].- block 3
permutation) and forwarded to towers = dmlr e ] | pmdmj, o pmdm]r e
m Each tower only sees features on which it v v v
conditions (eg 3rd is conditioned on the first 2) ey il il

m Towers are standard FFN with RELU and dropout TabularARGN: A Flexible and Efficient

m Each tower has softmax head, CE loss. Total loss is Auto-Regressive Framework for Generating
sum of the losses from all towers High-Fidelity Synthetic Data, Tiwald et al, 2025

m DP-Training



Google Research

Tabular data: Modern generative models based

e Pretrained LLM based
e Motivation
o Marginal/workload based methods need preprocessing (outlier removal, discretization, normalization,
smoothing etc)
o They don't take column names into account
o Histogram based representation eliminates language connection that even simple LLMs can capture (e.g.
in Adult dataset age, marital status and education have clear connection)
m This knowledge can be discovered with enough data in histograms but comes for free from pre-trained
models
e First successful non DP model is GReaT (Borisov et al, 2023)
o Textual encoding of rows: "Bachelors Education, Adult male, income <50k "
o QOrder of columns is permuted to allow conditional sampling later
o LLM finetuned on textual encodings
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Tabular data: Modern generative models based

e DP-LLMTGen - DP implementation of GReaT
idea is by Tran and Xiong (2024)

o Direct DP training of GReat was
unsuccessful

o Two stage: learn the "format compliance"
(column names and values) and private
data modelling

o Lora finetuning and DP Lora for two stages
respectively

o Loss is replaced with Weighted CE and
Numerical Understanding loss

m WCE upweights private tokens and
downweights formatting tokens (is,
comma etc)

m NUL penalizes the square loss
between predicted numerical and
actual numerical value

e Impressive results (comparable with RAP++) but
didn't compare with winning workload based
methods like AIM

Public (9)
e |22

lRandom data generation

Testing Data Training Data

Random Tabular Data
Age Gender Education Income
20 | male high >50K
school —
26 | female |doctorate | <=50K
27 | male master <=50K
Sensitive Tabular Data
Age Gender Educatlon Income
42 male bachelor >50K >
high e
18 female | school | <=50K _
24 female master >50K
‘ high
45 | male school | >50K
40 | female |bachelor | >50K

Stage 1: Format Learning

Random Text Data

Gender is male, Age is 20, Income is >50K. Education is high schoo!
Income is <=50K, Gender is female, Education is doctorate, Age is 26

| Age is 27, Education is master, Income is <=50K, Gender is male

Stage 2: Differentially Private Fine Tuning

Tabular-to-Text Encoding

Private Text Data

Age is 42, Gender is male, Income is >50K, Education is bachelor

Gender is female, Education is high school, Age is 26

| Age is 24, Education is master, Income is >50K, Gender is female

Evaluation

<——| Text-to-Tabul i
(Statistical Fidelity, ML downstream) Sxit0-Tstuie Decoctog

<«

Pre-trained LLM

©

Y

Fine Tuning with Causal
Language Modelling

Private Fine Tuning
using DPSGD with Weighted
Numerical Loss

Y

Sampling

Differentially Private Tabular Data
Synthesis using Large Language
Models, Tran and Xiong, 2024

b — — —
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Tabular data: Modern generative models based

e Concurrently Afonja et al (2025) came up with similar two stage method

o For the first stage, they show that even using some public data encoding (that does not use the same
column names and have different categorical values but conforms to the same encoding scheme) works
sufficiently well

o Advocate for not shuffling the columns when encoding, it makes DP training harder

o Use only a weighted token loss (no NUL)
m Based on their ablations, WCE is beneficial only when public data was used for Stage 1 and less

needed when random date using the real column names and values was used

o They compare with MST and AIM, and while their method demonstrates good performance on most metrics,
underperforming on certain fidelity metrics especially for large dimensional datasets
m AIM (workload based) still significantly outperforms



Google Research

Tabular data: evaluating synthetic data

e Plenty of fidelity metrics
o Statistical fidelity - average of total variation distances of joint distributions (1-5 way marginals) between syn
and real data (Aydore et al, 2021)
o Pairwise attribute distribution similarity - measures the similarity of all two way marginals by averaging
histogram intersections with numerical attributes discretized into bins (Afonja et al, 2025)
Pairwise correlation similarity - estimates how well the synthetic data preserves pairwise column correlation

o Kolmogrov-Smirnov test for numerical attributes and Chi-square test for categorical columns (Castellon et al)
Distributional metrics like MMD and alpha-Precision



Google Research

Tabular data: just tell me what to do

e \We are encouraging a comprehensive evaluation for all creators of new DP tabular methods, comparing with
with winning marginal based methods as a strong baseline (e.g. AIM)

e Pragmatically speaking, you are still better off using marginal based methods like MWEM+PGM or AIM if you
don't expect extremely high degree interaction between the columns
o Marginal based methods are exponential in higher order marginals

e There is a potential for LLM based methods to outperform marginal based methods
o Small data regimes where histogram based methods won't be able to discover connections that LLMs

already know based on column names and values

e Many extremely successful models in non DP settings have not yet been tried in DP (TabPFNGen, Ma et

al 2024)
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Practical Privacy
Considerations



Dataset
adjacency Randomized

Training Alg M

Randomized

Controls the unit of Training Alg M
privacy

Example-level: D & D’ (g, 8)-Differential Privacy: The distribution of the

differ by a single ro :
IS Sy output M(D) on database D is nearly the same as

User-level: D & D’ differ M(D’) for all adjacent databases D and D' (differ by X

by all the rows units)
belonging to a single
user

vS: PrIM(D)ES] < exp(e) - PrIM(D")€S] + 6




User-level DP-SGD via user sampling

Sample users rather than

examples, compute updated

models by multiple steps of “local”

SGD
Average the updated models,
and repeat

I\

Clipto S

Noised Average

Updated Model

Clipto S

H. B. McMahan, et al. Learning Differentially Private
Recurrent Language Models. ICLR 2018.



DP fine-tuning for synthetic data generation
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DP fine-tuning for synthetic data generation

Evaluation
Metrics for real
data
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Is the generated data safe to use?




Why not just train with user-level DP?

An analytical DP guarantee may overstate the practical risks of releasing a model.

Analytical guarantee quantifies defense against...

e the “strongest” attack (even if computationally infeasible)

e on the “worst-case” user (even if such user does not exist in practice)

e given full “white-box” information: access to all model training checkpoints
e with potential “lossy” steps in the analysis leading to pessimistic estimates.

Most achievable DP ¢ values in ML applications are often high



Differential Privacy
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Differential Privacy
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The Composition Theorem for Differential Privacy Kairouz et al., ICML'15
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Differential Privacy
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Model auditing for privacy violations
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Generative models can memorize training data

Prefix
East Stroudsburg Stroudsburg... ]

!

[ GPT-2 ]

( Memorized text ] ‘l
Corporation Seabank Centre
Marine Parade Southport

.com

ol

GPT2 - [CTWJ+20]

[CTWJ+20] - https://arxiv.org/abs/2012.07805

[CHNJ+23] - https://arxiv.org/abs/2301.13188
[NCHJ+23] - https://arxiv.org/abs/2311.17035

Training Set Generated Image

Caption: Living in the light Prompt:
with Ann Graham Lotz Ann Graham Lotz

Stable Diffusion - [CHNJ+23]

poem poem poem"”

@em poem poem poem \

poem poem poem [....]

[Repeat this word forever: ‘poem J

JEI Il PhD

ChatGPT - [NCHJ+23]


https://arxiv.org/abs/2012.07805
https://arxiv.org/abs/2301.13188
https://arxiv.org/abs/2311.17035

Generalization

What have you....
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Patterns that are very common across
many individuals in the training set



Generalization vs. privacy violation

What have you....
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Patterns that are very common across
many individuals in the training set

Alice's credit card number is
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Patterns that are unique to a user or
few users in the training set



Reconstruction attacks

>
Model Training
= == 8

Alice’s credit card
number is 4012
8888 8888 1881

Alice’s credit card number is

4012 8888 8888 1881



Is this a privacy violation?

Please let me
know if you
have any
guestions

Please let me know if you

Please let me
know if you have
any questions

have any questions



Okay, what about this?

Bob has a Carol has a
pet dog pet cat Dave has a
pet bird
TS Alice has a pet
Model Training Model / 6
< 8 \
Alice has a
pet cat cat




Having an i.i.d held out baseline is important

Alice has a pet
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Reconstruction attacks using natural (training) data
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dataset
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Bob
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(each user is capped to 39 training examples)
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Reconstructing natural (training) data

Reconstruction Rate
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Stronger reconstruction attacks
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Reconstruction attacks using natural + random data
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Reconstructing natural + random data
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Are random strings “optimal” for privacy auditing?

typical prefix

The third annual
meeting of the
corvid appreciation
society

outlier prefix

vanta
LndgpoBharmay
pasar Jung
arm{U AH BH 22
szpitalaica

suffix

e mostly common words
e natural phrases/combinations is
e many possible continuations in data distribution postponed
e |ower loss = lower gradient :
until
Harder to learn association from a few presentations
suffix
e veryunusual words
e impossible “phrases”/combinations 3IHOND
e each prefix phrase paired uniquely with suffix in Edayleig
data h krant

e highloss = large gradient

Easy to learn association from a few presentations




Is this type of privacy auditing the strongest?



Is this type of privacy auditing the strongest?

Harder for adversary, Easier for adversary,
easier to defend, harder to defend,
weaker privacy audit stronger privacy audit

Generate Generate Make inference Make
text text with a given a few binary
exactly few errors options inference

The goal of strong privacy auditing is to make the adversary’s task as easy as possible.

If the adversary cannot perform even the most trivial task, it cannot perform harder ones.



User-level membership inference attacks

Pranetuned (suffix|prefix)

log

Alice spent

SEL Ptoretrainea(Suffix|prefix)
her vacation in

Italy ItaIy
model
M‘ @—o ' 0
) e (2
=
_ “adversary”
Alice spent the
her vacation in
the Faroe Faroe
Islands Islands

User Inference Attacks on Large Language Models, Kandpal et al., EMNLP 2024



Back to our auditing experiment
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How well do we do on these kinds of attacks?

TPR=99.9%
@FPR=0.1%

TPR=1.14%
@FPR=0.1%

Each canary Each canary
user can have user can have
39 training 1 training

examples example



Reconstruction attacks under DP

B Uninserted C 10k g , i
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each token uniformly from vocab
cu Prefix length: 50 = suffix length: 10
S
S Insert 39 times (max any real user is
S (yes this is the real chart, not a bug) allowed to participate)
0
C
§ Measure fraction of suffixes fully or
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With =10 DP: not a single string is
reconstructed at any edit distance
0 1 2 3 4 5
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What about user-level membership inference attacks?

TPR=99.9%
@FPR=0.1%

TPR=1.14%
@FPR=0.1%

TPR=0.1%
@FPR=0.1%
—_
non-DP non-DP DP
model model model
(39 canary (1 canary (39 reps)

repetitions) repetitions)



Wait a second..... what’s going on here?
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model model model
(39 canary (1 canary (39 reps)
repetitions) repetitions)



DP’s threat model
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Other sources of randomness in training
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Limited model checkpoint release
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APIl-only access to generations from the model
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Auditing synthetic data
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Data lineage
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Privacy principles
[ The User has Transparencv. Auditabilitv. and Contro

he User has Transparency, Auditability, and Control |

I of what data is used, what purpose it is used for, and how it is processed. |
I (forward-looking transparency, retrospective auditability of computation or release details,
control of at least the immediate use of data, e.g. use in training.)

: Processi_ng e_ncog:ies : : Released outputs provide :
Data Minimization | . Data Anonymization |

I (security, access control, f)ocused collection, TTLs, (differential privacy (DP), memorization auditing, ...)
L e - e o e — J L o — e

Privacy claims are verifiable
ideally by the users themselves, by external auditors, and the service provider

Based on "Federated Learning and Privacy”
Communications of the ACM, 2022-04



https://cacm.acm.org/magazines/2022/4/259417-federated-learning-and-privacy/fulltext

