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Data In Machine 
Learning



The Role of Data 2009:

“For many tasks, words 
and word combinations 
provide all the 
representational 
machinery we need to 
learn from text.”



Scaling Laws:

Capture the precise trade-off 
between model quality, training 
dataset size, and computation 
necessary. 

The Role of Data: 2020+



But need good data hygiene

Data comes with restrictions on use:

- Some data may be personal: names, phone numbers, locations, … 
- Some data may be regulated: GDPR, AIA, … 

For LLMs especially:

- Larger data sets are more likely to include private information by chance
- Models are large, opaque, and difficult to understand directly
- GenAI outputs are rich enough (text, images) to potentially include detailed 

private information



The Promise of Synthetic Data

What if…

- Can generate new data 
- That is similar in distribution to given data 
- But is entirely synthetic and new…  

Can we train models on synthetic data instead?



Why Synthetic Data?

Change the beginning of the usual pipeline

By changing the data, keep the rest of the pipeline the same:

- Same architecture
- Same optimizers 
- Same deployment checks
- Same …



Types of Synthetic Data

Pure Synthetic Data DP Synthetic Data



Proprietary + Confidential

Pure Synthetic Data:  Homework for LLMs

Synthetic data is used to:
- Create more examples of the same concept (e.g. generate more 5th grade algebra problems) 
- Rewrite or rephrase training examples to get more diversity (e.g. provide summaries of topics)

Mostly commonly generated by prompting existing LLMs:

. 
“

“Synthetic data generation using large language models (LLMs) offers a powerful solution to a commonly 
faced problem: the availability of high-quality, diverse, and privacy-compliant data.”

Suppose you are a movie reviewer. Please generate a 
movie review to show your <feeling> about the movie 
<movie> with detailed explanation… 

LLM
There are movies and 
then there are films. The 
plot…



Pure Synthetic Data:  Perpetual Motion Machine?

In addition to other challenges – e.g. factuality / hallucination, diversity of examples, representativeness, etc. 



Types of Synthetic Data

Pure Synthetic Data DP Synthetic Data



DP Synthetic Data
 Many-Many Relationship between user data and synthetic data with strong privacy protections.  

Aggregation
Differential Privacy

Generalization

Data Record 

Data Record 

Data Record 

Data Record 

Synthetic 
Data Record 

Synthetic 
Data Record 

Synthetic 
Data Record 

Synthetic 
Data Record 

DP Synthetic Data Generation



Today

- What is privacy?
- How to generate useful DP Synthetic Data - text, images, tables, … 
- How to evaluate its utility?
- What else you need to do in practice?



Differential Privacy



Privacy (UK: /ˈprɪvəsiː/, US: /ˈpraɪ-/) is the ability of an individual or group to 
seclude themselves or information about themselves, and thereby express 
themselves selectively.

(From Wikipedia)

What is privacy?



Privacy Principles in Machine Learning

- Transparency and User control
○ Users can be aware of what data is used, what purpose it is used or and how it is 

processed, and have full control on whether to enable the collection and use of their 
data

- Data minimization
○ Data is only collected focusing on specific computation needs, with access limited at 

all data processing stages
- Data anonymization

○ The final released output of the computation (e.g. ML model) does not reveal anything 
unique about an individual.

- Auditability and verifiability
○ Users, and potentially third parties can audit and verify privacy claims by examining 

released models, open-sourced code, and privitarized system logs, etc. 



Proprietary + Confidential

Idea 1:
- Remove user ids!

How to anonymize?



Proprietary + Confidential

Idea 1:
- Remove user ids!

- 5 digit zipcode + DOB + gender uniquely identifies 87% of US 
population.

How to anonymize?



Proprietary + Confidential

Idea 2:
- Only allow access to aggregates

How to anonymize?



Proprietary + Confidential

Idea 2:
- Only allow access to aggregates

- Determined if a particular participant is part of the dataset 

How to anonymize?



Proprietary + Confidential

Idea 3:
- Make sure at least k different people share the attributes
- “k-anonymity”

How to anonymize?



Proprietary + Confidential

Idea 3:
- Make sure at least k different people share the attributes
- “k-anonymity”

Attacks:
- [Homogeneity]: All k people share a sensitive attribute. 

- “All k have declared bankruptcy in the past” 

How to anonymize?



Proprietary + Confidential

Idea 3 (b):
- Make sure at least k different people share the attributes
- And sensitive attributes are diverse in each equivalence class 
- “k-anonymity with l-diversity”

How to anonymize?



Proprietary + Confidential

Idea 3 (b):
- Make sure at least k different people share the attributes
- And sensitive attributes are diverse in each equivalence class 
- “k-anonymity with l-diversity”

Attack:
- Consider a class that has people who are either bankrupt or convicted 

of crime. 

How to anonymize?



Proprietary + Confidential

Idea 3 (c):
- Make sure at least k different people share the attributes
- And sensitive attributes are diverse in each equivalence class 
- And distribution of sensitive attribute is similar to global 
- “k-anonymity with l-diversity and t-closeness”

How to anonymize?



Proprietary + Confidential

Idea 3 (c):
- Make sure at least k different people share the attributes
- And sensitive attributes are diverse in each equivalence class 
- And distribution of sensitive attribute is similar to global.
- “k-anonymity with l-diversity and t-closeness”

Attack:
- Still have to define sensitive attributes. Does not prevent information 

leakage when attacker knows additional information about the 
subject. 

How to anonymize?



Proprietary + Confidential

The output of an algorithm should be the same whether or not a specific 
individual participated. 

What do we want?



Proprietary + Confidential

The output of an algorithm should be the same whether or not a specific 
individual participated. 

Too harsh: by induction no learning can happen

What do we want?



Proprietary + Confidential

The probability of an output of an algorithm should be almost the same 
whether or not a specific individual participated. 

What do we want?



Proprietary + Confidential

Want to return the average age of people in this room
- Without revealing my age

System returns:
- True answer + Gaussian noise with mean 0, std 1

Example



Proprietary + Confidential

Result Distribution

Noisy Average Age



Proprietary + Confidential

Result Distribution, when average differs by one

Noisy Average Age



Proprietary + Confidential

Given actual result (red): can’t say if it came from blue or black curves

More likely that it came from blue curve, but not much more likely.

Noisy Average Age



Proprietary + Confidential

Want to return the average age of people in this room
- Without revealing my age

System returns:
- True answer + Gaussian noise with mean 0, std 1

Even if attacker knows the age of everyone else, can’t definitively say what 
my age is, just give a distribution.

Example



Proprietary + Confidential

If a single individual makes a big difference in the answer, the curves are 
well separated, so result is less private. 

Some more details



Proprietary + Confidential

If a single individual makes a big difference in the answer, the curves are 
well separated, must add more noise

Some more details



Proprietary + Confidential

The probability of an output of an algorithm should be almost the same 
whether or not a specific individual participated. 

Has a parameter “epsilon” which controls privacy vs. utility trade-off. 
Loosely speaking:

- Effect of single person changing the answer / std. deviation of noise
- Larger epsilon = less private. 
- Typical values (0.1-0.2 in academia, 1-10 in industry)

Differential Privacy



Differential Privacy Summary 

Limit outliers and contributions from any user:

- Outliers in value or in number of data points contributed  

Aggregate information across many users 

- Aggregation is a key anonymization component 

Add some noise to the aggregates 

- Need to add noise to protect against differencing attacks 



Example: Gradient Descent with Differential Privacy

- Sample examples to form a batch 
- “Clip” or bound the individual gradients
- Average across the batch 
- Add noise  the average

- Sensitivity analysis to decide an appropriate amount of noise for DP 
guarantees

- Can be calculated analytically for some functions like strongly convex 
linear ones

- General solution is just to clip per example gradient to some 
predefined norm C

More in How to DP-fy ML Sec. 4.1.2

https://arxiv.org/pdf/2303.00654.pdf


Example: DP Training: DP-SGD

More in How to DP-fy ML Sec. 4.2

https://arxiv.org/pdf/2303.00654.pdf


Key Differential Privacy Properties 

Post-Processing & Composition:

- Any user-data independent transformation (post-processing) with arbitrary 
additional information retains all of the differential privacy properties

Composition:

- When combining several DP methods together, combine the DP parameters. 

Theoretical Guarantees:

- The mathematical guarantees provided are on the algorithm used to generate 
the anonymous data. Use robust, well-established libraries (like crypto).



Key Parameters when Designing Differential Privacy

Privacy Unit: What is a user?

Contribution Bounding: How to limit outliers?

Methods: Which private method are you using? 

Parameters: What is the value of epsilon, delta?



DP synthetic text



Overview
1. Taxonomy of methods
2. Methods

a. DP finetuning
b. Private evolution
c. DP inference

3. Comparison

For each method: Will cover (1) how the algorithm works; (2) 
how and when to use it



Taxonomy of methods for DP text synthesis
Goal: Unlock value of private text data with DP



Taxonomy of methods for DP text synthesis
Goal: Unlock value of private text data with DP

DP-fy 
downstream 
training

DP Synthetic data
DP Synthetic data = organizational breakthrough for DP

1. Bespoke DPfying someone’s training pipeline is hard
2. Everyone knows what to do with data



Taxonomy of methods for DP text synthesis
Goal: Unlock value of private text data with DP

DP-fy 
downstream 
training

DP Synthetic data

Interface:
DP Synthetic data

Product and data owner:
- training pipelines

- domain knowledge
- other data sources

DP team expertise:
- organizational privacy requirements

- DP correctness
- optimization for utility

DP Synthetic data = organizational breakthrough for DP
1. Bespoke DPfying someone’s training pipeline is hard
2. Everyone knows what to do with data



Taxonomy of methods for DP text synthesis
Goal: Unlock value of private text data with DP

DP-fy 
downstream 
training

DP Synthetic data

DP Finetuning Inference-only



Taxonomy of methods for DP text synthesis
Goal: Unlock value of private text data with DP

DP-fy 
downstream 
training

DP Synthetic data

DP Finetuning Inference-only

DP Finetuning
- Finetune an LLM with DP-SGD to generate data

{
   inputs: “Generate data”,
   targets: “{data_record_i}”
}

Workhorse method that is the best for most cases



Taxonomy of methods for DP text synthesis
Goal: Unlock value of private text data with DP

DP-fy 
downstream 
training

DP Synthetic data

DP Finetuning Inference-only

Private evolution DP LLM inference

LLM

Private dataset

“Give me a dataset like this one”

DP synthetic dataset



Taxonomy of methods for DP text synthesis
Goal: Unlock value of private text data with DP

DP-fy 
downstream 
training

DP Synthetic data

DP Finetuning Inference-only

Private evolution DP LLM inference

Private evolution 
- starting from a synthetic seed corpus
- iteratively select and modify examples guided by 

embedding distance to private data

Best results for low epsilon/low data volume



Taxonomy of methods for DP text synthesis
Goal: Unlock value of private text data with DP

DP-fy 
downstream 
training

DP Synthetic data

DP Finetuning Inference-only

Private evolution DP LLM inference

DP LLM inference
- Introduce DP during language model decoding step
- Privacy cost increases with the number of tokens you 

generate

Best for getting a few examples, very quickly



1. DP Finetuning

2. Private evolution

Taxonomy of methods for DP text synthesis
Goal: Unlock value of private text data with DP

DP-fy 
downstream 
training

DP Synthesis

Inference-only

3. DP LLM inference

We will cover these 3 methods today.



Use DP-SGD to finetune a pre-trained LLM into a data generator. 

The most straightforward and performant method.

DP finetuning

LLM real data record “Generate text”

DP trained 
LLM

synthetic data 
record “Generate text”

1. Training

2. Sampling

Use LoRA on all layers

- LoRA outperforms full finetuning empirically
- Also efficiency gains with DP



D

r4

r7

r10

r1780

1. Sample a batch of examples
and compute gradients for the current model

Iterative training with differential privacy

M. Abadi, et. al.  Deep Learning with 
Differential Privacy. CCS 2016.



D
2. Clip each gradient to maximum L2 norm S

Clip to S

Clip to S

r4

r7

r10

r1780

Iterative training with differential privacy

M. Abadi, et. al.  Deep Learning with 
Differential Privacy. CCS 2016.



D
3. Average clipped gradients

Average

Clip to S

Clip to S

r4

r7

r10

r1780

Iterative training with differential privacy

M. Abadi, et. al.  Deep Learning with 
Differential Privacy. CCS 2016.



D
4. Add (Gaussian) noise

+
Average

Clip to S

Clip to S

r4

r7

r10

r1780

Iterative training with differential privacy

M. Abadi, et. al.  Deep Learning with 
Differential Privacy. CCS 2016.



5. Take a step of SGD

Noised 
Average
Gradient

D

+
Average

Clip to S

Clip to S

r4

r7

r10

r1780

Iterative training with differential privacy

M. Abadi, et. al.  Deep Learning with 
Differential Privacy. CCS 2016.



6. Repeat for many iterations, accumulating 
the privacy cost of each database access

Noised 
Average
Gradient

D

+
Average

Clip to S

Clip to S

r4

r7

r10

r1780

Iterative training with differential privacy

M. Abadi, et. al.  Deep Learning with 
Differential Privacy. CCS 2016.



DP-SGD



DP-SGD



DP-SGD

DP Accounting: based on parameters chosen,  compute privacy guarantee ε(N, B, T, σ)



Per-example gradient clipping in JAX
N = 3
w = np.random.randn(2) # (D,)
X = np.random.randn(N, 2) # (N, D)
y = np.random.randn(N) # (N,)

def loss(w, data):
  X, y = data
  return jnp.sum((X @ w - y)**2)

Simple regression example



Per-example gradient clipping in JAX
N = 3
w = np.random.randn(2) # (D,)
X = np.random.randn(N, 2) # (N, D)
y = np.random.randn(N) # (N,)

def loss(w, data):
  X, y = data
  return jnp.sum((X @ w - y)**2)

grad_fn = jax.grad(loss)
>>> grad_fn(w, (X, y))
Array([17.44384  ,  6.9017286], dtype=float32)

Compute gradients wrt. 
parameters w
- sum of per-example gradients

Training loop: update w, draw a new batch, … 

Simple regression example



Per-example gradient clipping in JAX
# grad_fn: w, data -> dl/dw

grads = jnp.stack(
    [grad_fn(w, (xi, yi)) for xi, yi in zip(X, y)]
) # (N, D)

Naive per-example grads



Per-example gradient clipping in JAX
# grad_fn: w, data -> dl/dw

grads = jnp.stack(
    [grad_fn(w, (xi, yi)) for xi, yi in zip(X, y)]
) # (N, D)
>>> grads
Array([[ 5.3370066 , 12.219472  ],
       [ 9.310922  , -4.8723297 ],
       [ 2.795912  , -0.44541267]], dtype=float32)

Naive per-example grads



Per-example gradient clipping in JAX
# grad_fn: w, data -> dl/dw

grads = jnp.stack(
    [grad_fn(w, (xi, yi)) for xi, yi in zip(X, y)]
) # (N, D)

def clip(g, C):
  return g * jnp.minimum(1, C / jnp.linalg.norm(g))

clipped_grads = jnp.stack([clip(g, 1) for g in grads])

Naive per-example grads



Per-example gradient clipping in JAX
# grad_fn: w, data -> dl/dw

grads = jnp.stack(
    [grad_fn(w, (xi, yi)) for xi, yi in zip(X, y)]
) # (N, D) 

def clip(g, C):
  return g * jnp.minimum(1, C / jnp.linalg.norm(g))

clipped_grads = jnp.stack([clip(g, 1) for g in grads])
>>> clipped_grads
Array([[ 0.40025145,  0.9164054 ],
       [ 0.88601995, -0.46364704],
       [ 0.987547  , -0.15732467]], dtype=float32)

Naive per-example grads



Per-example gradient clipping in JAX
# grad_fn: w, data -> dl/dw

grads = jnp.stack(
    [grad_fn(w, (xi, yi)) for xi, yi in zip(X, y)]
) # (N, D) 

def clip(g, C):
  return g * jnp.minimum(1, C / jnp.linalg.norm(g))

clipped_grads = jnp.stack([clip(g, 1) for g in grads])
>>> jnp.sum(clipped_grads, axis=0) # (D,) 
Array([2.2738183 , 0.29543367], dtype=float32)

Naive per-example grads

Add noise to this, and use instead 
of the regular grad



Per-example gradient clipping in JAX
# grad_fn: w, data -> dl/dw

grads = jnp.stack(
    [grad_fn(w, (xi, yi)) for xi, yi in zip(X, y)]
) # (N, D) 

def clip(g, C):
  return g * jnp.minimum(1, C / jnp.linalg.norm(g))

clipped_grads = jnp.stack([clip(g, 1) for g in grads])
>>> jnp.sum(clipped_grads, axis=0) # (D,) 
Array([2.2738183 , 0.29543367], dtype=float32)

Naive per-example grads

Add noise to this, and use instead 
of the regular grad

SLOW



Per-example gradient clipping in JAX
# grad_fn: w, data -> dl/dw

grads = jnp.stack(
    [grad_fn(w, (xi, yi)) for xi, yi in zip(X, y)]
) # (N, D) 

vmap_grad_fn = jax.vmap(
    grad_fn,
    in_axes=(None, (0, 0))
)
grads = vmap_grad_fn(w, (X, y)) # (N, D) 

SLOW Vectorize over the batch 
axis of the data argument

Using jax.vmap



Per-example gradient clipping in JAX
# grad_fn: w, data -> dl/dw

grads = jnp.stack(
    [grad_fn(w, (xi, yi)) for xi, yi in zip(X, y)]
) # (N, D) 

vmap_grad_fn = jax.vmap(
    grad_fn,
    in_axes=(None, (0, 0))
)
grads = vmap_grad_fn(w, (X, y)) # (N, D) 
>>> grads
Array([[ 5.337006  , 12.219471  ],
       [ 9.310922  , -4.8723297 ],
       [ 2.795912  , -0.44541267]], dtype=float32)

SLOW Vectorize over the batch 
axis of the data argument

Using jax.vmap



Per-example gradient clipping in JAX
# grad_fn: w, data -> dl/dw

grads = jnp.stack(
    [grad_fn(w, (xi, yi)) for xi, yi in zip(X, y)]
) # (N, D) 

vmap_grad_fn = jax.vmap(
    grad_fn,
    in_axes=(None, (0, 0)),

 spmd_axis_name=”devices”
)

SLOW Vectorize over the batch 
axis of the data argument

Using jax.vmap

Parallelize the operation across devices



Per-example gradient clipping in JAX
# loss: w, data -> float

grad_fn = jax.grad(loss)
>>> grad_fn(w, (X, y))
Array([17.44384  ,  6.9017286], dtype=float32)

Regular training



Per-example gradient clipping in JAX
# loss: w, data -> float

grad_fn = jax.grad(loss)
>>> grad_fn(w, (X, y))
Array([17.44384  ,  6.9017286], dtype=float32)

Regular training

# ... vmap + clip
clipped_grads = jnp.stack([clip(g, 1) for g in grads])
>>> jnp.sum(clipped_grads, axis=0) # (D,)
Array([2.2738183 , 0.29543367], dtype=float32)

Replacement for grad



Per-example gradient clipping in JAX
# loss: w, data -> float

grad_fn = jax.grad(loss)
>>> grad_fn(w, (X, y))
Array([17.44384  ,  6.9017286], dtype=float32)

Regular training

# ... vmap + clip
clipped_grads = jnp.stack([clip(g, 1) for g in grads])
>>> jnp.sum(clipped_grads, axis=0) # (D,)
Array([2.2738183 , 0.29543367], dtype=float32)

import jax_privacy
clipped_grad_fn = jax_privacy.experimental.clipped_grad(loss, l2_clip_norm=1)
>>> clipped_grad_fn(w, (X, y))
Array([2.2738183 , 0.29543367], dtype=float32)

Drop in replacement for 
jax.grad!



github.com/google-deepmind/jax_privacy
jax_privacy v1.0.0 update



github.com/google-deepmind/jax_privacy

Example training loop: 
jax_privacy/examples/jax
_new_api_example.py

https://github.com/google-deepmind/jax_privacy/blob/main/examples/jax_new_api_example.py
https://github.com/google-deepmind/jax_privacy/blob/main/examples/jax_new_api_example.py


github.com/google-deepmind/jax_privacy

Colab tutorial: 
jax_privacy/examples/ 
dp_sgd_keras_gemma3_synthe
tic_data.ipynb

https://github.com/google-deepmind/jax_privacy/blob/main/examples/dp_sgd_keras_gemma3_synthetic_data.ipynb
https://github.com/google-deepmind/jax_privacy/blob/main/examples/dp_sgd_keras_gemma3_synthetic_data.ipynb
https://github.com/google-deepmind/jax_privacy/blob/main/examples/dp_sgd_keras_gemma3_synthetic_data.ipynb


github.com/google-deepmind/jax_privacy

Colab tutorial: 
jax_privacy/examples/ 
dp_sgd_keras_gemma3_synthe
tic_data.ipynb

https://github.com/google-deepmind/jax_privacy/blob/main/examples/dp_sgd_keras_gemma3_synthetic_data.ipynb
https://github.com/google-deepmind/jax_privacy/blob/main/examples/dp_sgd_keras_gemma3_synthetic_data.ipynb
https://github.com/google-deepmind/jax_privacy/blob/main/examples/dp_sgd_keras_gemma3_synthetic_data.ipynb


Hyperparameter tuning

1. Under a particular threshold C, a large range works:
a. Pick C so that almost all gradients are clipped, which corresponds to a 

biased, but less noisy update

Important hparams: Steps T, Batch size B, clipping norm C, noise multiplier σ 



+ +

Small clip norm: 
update 

magnitudes lost

Large clip 
norm: high 

noise for DP



Hyperparameter tuning

1. Under a particular threshold C, a large range works:
a. Pick C so that almost all gradients are clipped, which corresponds to a 

biased, but less noisy update
2. Normalize the update to decouple learning rate from C

Important hparams: Steps T, Batch size B, clipping norm C, noise multiplier σ 



Hyperparameter tuning

1. Under a particular threshold C, a large range works:
a. Pick C so that almost all gradients are clipped, which corresponds to a 

biased, but less noisy update
2. Normalize the update to decouple learning rate from C

Important hparams: Steps T, Batch size B, clipping norm C, noise multiplier σ 



Source: Unlocking High-Accuracy Differentially Private Image Classification through Scale (De et 
al., 2022)

https://arxiv.org/abs/2501.18914
https://arxiv.org/abs/2501.18914


Hyperparameter tuning

1. Under a particular threshold C, a large range works:
a. Pick C so that almost all gradients are clipped, which corresponds to a 

biased, but less noisy update
2. Normalize the update to decouple learning rate from C
3. Under fixed ε(σ, B, T), spending more compute helps compared to non-DP setup:

a. Fixing B, more steps T and correspondingly larger σ usually helps
b. Fixing T, larger batch size B and corresponding larger σ usually helps

- Important hparams: Steps T, Batch size B, clipping norm C, noise multiplier σ 

See: Scaling Laws for Differentially Private Language Models (McKenna et. al, ICML’25)

https://arxiv.org/abs/2501.18914


Inference-only methods

LLM

Private dataset

“Give me a dataset like this one”

DP synthetic dataset

- Does not require a custom DP-SGD 
implementation or access to model 
weights.

- Operates on top of an existing 
inference stack.

- Faster iteration but worse quality

Analogous to tradeoffs between 
finetuning/prompt engineering.

Private evolution (API access)
DP inference (logits access)



Private evolution

Starting from a seed of entirely synthetic corpus, 
Then alternate between: 
(A) filtering down to the examples most similar to private data; and
(B) expanding the corpus with LLM rewrites
Only place private data is used: finding the most similar data.

Best for low target epsilon/low private data volume scenarios



Private evolution

Synthetic

Private

(1) Private examples vote for 
closest synthetic example

DP histogram



Private evolution

Synthetic

Private

(1) Private examples vote for 
closest synthetic example

DP histogram

(2) Keep most similar 
synthetic examples

Filtered
Synthetic



Private evolution

Synthetic

Private

DP histogram

(2) Keep most similar 
synthetic examples

Filtered
Synthetic

(3) Expand with rewrites

Rewritten
Synthetic

LLM
Rewritten
SyntheticRewritten

Synthetic

(1) Private examples vote for 
closest synthetic example



Private evolution

Synthetic

Private

(1) Private examples vote for 
closest synthetic example

DP histogram

(2) Keep most similar 
synthetic examples

Filtered
Synthetic

(3) Expand with rewrites

Rewritten
Synthetic

LLM
Rewritten
SyntheticRewritten

Synthetic

(4) Repeat



Private evolution

Length

D
en

si
ty

200 200 2000 0 0

Iteration 0 Iteration 4 Iteration 9

Source: Differentially Private Synthetic Data via Foundation Model APIs 2: 
Text (Xie et al., ICML’24)

https://arxiv.org/abs/2403.01749
https://arxiv.org/abs/2403.01749


Private evolution

1. Some prompt engineering required:
- Seed corpus generation
- Rewrite prompt should introduce appropriate amount of variation



Private evolution

Source: Differentially Private Synthetic Data via Foundation Model APIs 2: 
Text (Xie et al., ICML’24)

SYSTEM: You are required to write 
an example of review based on the 
provided Business Category and 
Review Stars that fall within the 
range of 1.0-5.0.

USER: Business Category: {label_1} | 
Review Stars: {label_2} with keyword 
{subcategory}

(subcategories generated by LLM)

Seed corpus prompt

SYSTEM: You are a helpful, pattern-following assistant.

USER: Based on the Business Category and Review 
Stars, you are required to fill in the blanks in the Input 
sentences. If there are no blanks, you are required to 
output the original Input sentences.

Business Category: {label_1} | Review Stars: {label_2}
Input: {masked_input}

Rewrite prompt

https://arxiv.org/abs/2403.01749
https://arxiv.org/abs/2403.01749


Private evolution

1. Some prompt engineering required:
- Seed corpus generation
- Rewrite prompt should introduce appropriate amount of variation

2. Private data can be highly ephemeral or kept on-device

3. Private post-processing: the first 2 steps of PE (voting and filtering) can 
be used standalone to improve DP finetuning outputs.



DP inference

Introduces DP during the language model decoding process, by: 
(1) distributing private data into generation prompts in parallel; and
(2) mixing their output predictions.

Privacy costs are paid per token generated.

Best for generating a small amount of examples quickly.



DP inference

Generate caption similar to:
“Umar Syed visits a farm”

LLM

Problem: LLM can reveal private information.

“Umar Syed visits an orchard”

Idea: Prompt the LLM to generate synthetic data from real data.



DP inference

Generate caption similar to: “Caption #1”

Generate caption similar to: “Caption #2”

Generate caption similar to: “Caption #3”

LLM

LLM

LLM

Synthetic caption similar to 
input captions, but not like 

any one of them.

Observation: LLM responses are generated randomly, one token at a time.

Solution: Mix token distributions across parallel LLMs running on different 
inputs, which reduces dependence on any one input.

Mix token distributions













DP inference



DP inference



DP inference

Initialize the response



DP inference

For each token of the response



DP inference

Get next token predictions for each 
element of the batch



DP inference



DP inference

ε paid for this token, accumulate T times



Token aggregation in DP inference
Many possible choices for the token aggregation function:
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Token aggregation in DP inference
Many possible choices for the token aggregation function:

a. Average the probabilities and add noise (Gaussian mechanism)
b. Each prompt returns top token, return noisy top choice (PATE)
c. Softmax sampling from averaged, clipped logits (Exponential 

mechanism)

clipc(z)i = max(-c, min(c, zi))



clipc(z)i = max(-c, min(c, zi))

Token aggregation in DP inference



clipc(z)i = max(-c, min(c, zi))

Token aggregation in DP inference



Unified view of methods

DP finetuning Private evolution DP inference

Comparison Finetuning Evolutionary 
prompting

Inference

Primitive Gradient Selection Token sampling

Start from a non-private approach to generate synthetic data

DPify an iterative primitive used to extract information from real data

- Amenability to DP: primitive is an aggregate function with bounded 
sensitivity

- Privacy guarantee of primitive => privacy guarantee of iterations



Rough comparison of methods
DP finetuning Private evolution DP inference

Recommended when 
your input size is …

>10K <5k Not recommended

Yield Infinite <= input data size 1k ~> 25 examples

Access required Weights API Logits

Training required? Yes No No

Prompt engineering No Yes No

Inference cost 1 Batch size rounds x rewrites

OOD Adaptability High Low Medium

Data persistence Entire dataset 
required for training.

Ephemeral/stays on 
device (votes only)

One batch at a time



Summary of comparison of methods

DP finetuning is the workhorse method that delivers the best quality given 
sufficient data, compute, model access, and engineering effort.

Since the adoption of DP synthetic data is often quality-bottlenecked, this is 
likely the option that best fits your needs.
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Summary of comparison of methods

DP finetuning is the workhorse method that delivers the best quality given 
sufficient data, compute, model access, and engineering effort.

Since the adoption of DP synthetic data is often quality-bottlenecked, this is 
likely the option that best fits your needs.

Private evolution is most useful when the stringent (ε<1) required or small 
data.

DP inference is useful for generating a small amount of examples quickly.



Utility Metrics

The best utility metric is downstream task performance, since that is 
why you are generating synthetic data to begin with.

There are proxies that can be helpful:
- Heuristics: n-gram statistics, length distribution
- MAUVE score measures distributional similarity

- Real and synthetic dataset are embedded and clustered together. 
MAUVE is high when clusters contain a mix of real and synthetic.

- Correlates with downstream task performance.



DP synthetic images



- Image data is ubiquitous
- Image data has large body of work on image 

generation (starting from GANs)
- Image data is very hard to synthesize properly
- DP image synthesis brings it to the next level!

- Images are high dimensional. Capturing the 
intricate distribution of natural images requires 
complex models. DP on more complex models 
results in more noise

- There is a "continuity" of images in many 
directions (not just 1 as in text!)

- Computation cost of DP is going to be high for 
large models
- And models like GANs (adversarial training) 

are harder to train with DP
- Utility evaluation difficulties: metrics like FID 

don't always correlate well with downstream 
performance

Image data…

"Unsupervised Representation Learning with Deep Convolutional Generative Adversarial 
Networks" Alec Radford, Luke Metz, Soumith Chintala, 2015

Diffusion Models Beat GANs on Image Synthesis, Prafulla Dhariwal, Alex Nichol, 
2021

https://arxiv.org/search/cs?searchtype=author&query=Radford,+A
https://arxiv.org/search/cs?searchtype=author&query=Metz,+L
https://arxiv.org/search/cs?searchtype=author&query=Chintala,+S


- Most academic works treat each image as a privacy unit (example-level privacy unit)
- In this setting, DP synthetic data will loosely guarantee that it won't be very different whether a particular 

image was in your private dataset or not
- In real world applications, it is perhaps not that needs to be done

- Most of the time you will want at least user-level privacy
- My synthetic data is not significantly different, whether a particular user contributed their data to my 

private dataset or not
- The definition of a "user" is however application dependent

- User can be a creator of an image
- Users can be people present on the photos

- Bottom line:
- For each image define one or more "users" associated with the image
- Do appropriate user contribution bounding (e.g. 1 image per user)
- Proceed as if you had a example level privacy unit

What is appropriate privacy unit for image data



- DP training (from scratch) or DP-Finetuning
- GANs, VAEs
- Multimodal LLMs, Diffusion

- Inference only/API based methods
- PATE-style
- Private evolution

- Data release mechanisms have not been successful so far
- They attempt to calculate some statistics or intermediate representations of the data, dp-fy that and 

generate the images from noised representation
- Examples include DPGEN (Chen et al, 2022b) that was shown to be not proper DP
- DP-DRE (Wu et al, 2023) which uses publicly pretrained encoder and ICGAN generator. Private data 

is embedded via an encoder and the distribution is DP-fied via DP density estimator. Samples are 
then drawn from this distribution and decoded via ICGAN 

What are the methods for DP image synthesis



● GAN models
○ First somewhat successful models in image synthesis
○ To obtain DP version of GANs, DP-SGD (and likes) is used to 

update the discriminator parameters (DPGAN Differentially 
Private Generative Adversarial Network )

● DP-Training of GANs is hard
○ GANs are notoriously hard to train (diverge, require early 

stopping)
○ Early DP GANs struggled to generate good images below low 

resolution like 32x32

DP Training/finetuning for Image generation: GANs

Source: 
https://en.wikipedia.org/wiki/Generative_adversarial_
network#/media/File:Generative_adversarial_network
.svg 

https://arxiv.org/pdf/1802.06739
https://arxiv.org/pdf/1802.06739
https://en.wikipedia.org/wiki/Generative_adversarial_network#/media/File:Generative_adversarial_network.svg
https://en.wikipedia.org/wiki/Generative_adversarial_network#/media/File:Generative_adversarial_network.svg
https://en.wikipedia.org/wiki/Generative_adversarial_network#/media/File:Generative_adversarial_network.svg


● Several attempts at improving DP-GANs
○ DP-finetuning of publicly pre-trained GANs

■ DP-GAN-MI (Chen et al 2022) uses publicly pre-trained feature extractor
■ DP-DRE (Wu et al) uses publicly trained encoder (and also does DP-SGD on 

GAN)
○ Alternative losses

■ DP-Sinkhorn (Cao et al 2021) uses optimal transport based loss (Sinkhorn 
divergence, measuring the distinct between real and synthetic distributions)

■ GS-WGAN (Chen et al 2020) uses alternative loss (Wassertein-1 loss) that 
generated bounded gradients with norms near 1. This allows to assume 
clipping norm of 1 and forego hyperparameter search

DP Training/finetuning for Image generation: GANs



● Diffusion models are state of the art for high fidelity image generation
● Brief intro from  (dp-promise: Differentially Private Diffusion Probabilistic Models for Image Synthesis )

○ Forward diffusion process (multi step): gradually adding noise to the data
○ Markov chain {x0, x1, .. xT}

○ Reverse sampling (multi step, Markov chain): learning to reverse this process via a model, starting 
from noised images produced in the forward pass (DP-LDMs, Liu et al 2023) to produce the original 
image
■ Predict the noise distribution from t to t-1, recover x_t-1 by removing the noise
■ Model Z_theta learns to predict the noise injected from 0 to t =>derive the mean of the noise
■ Objective to learn Theta uses samples from iterative forward process

DP Training/finetuning for Image generation: Diffusion

https://www.usenix.org/system/files/usenixsecurity24-wang-haichen.pdf


● DPDM (Dockhorn et al 2023) - DP SGD 
applied to Diffusion

● DP-LDM (Liu et al 2024)
○ Prompt or label conditioned
○ Train an encoder-decoder on public 

data
○ Use the encoder to reduce the 

dimensionality on private data
○ Train a diffusion model with 

DP-SGD on lower dimensionality 
representation
■ Key is reduction in 

DP-finetunable parameters : 
authors fiinetune only attention 
modules

○ Decode back 
○ Able to generate 256x256 images 

DP Training/finetuning for Image generation: Diffusion

DP-LDMs: Differentially Private Latent Diffusion Models Michael F. Liu, 
Saiyue Lyu, Margarita Vinaroz, Mijung Park



● Common themes are similar to DP-training of LLMs for text
○ Reducing the number of parameters finetuned with DP

■ Some also reduce the input dimensionality (Liu et al 2024 DP-LDM)
○ Using publicly pretrained Diffusion models (e.g. ImageNet pretrained

■ Privimage (Li et al 2024) subselects the public data closest to the private data via clip embeddings 
for pretraining

■ DPRandP (Tang et al 2023) pretrain on synthetically generated random data
■ Park et al (2024) use small related public dataset, boost it with Diffusion models, and then pretrain on 

the combined set
○ Leveraging inherent Diffusion noise

■ Wang et al (dp-promise) argues that Diffusion models already add noise during forward process
■ This noise should be used to give DP guarantee (instead of introducing additional noise via DP-SGD)

DP Training/finetuning for Image generation: Diffusion



● DP-Promise leverages the fact that we already introduce noise during 
the forward stage of diffusion which contributes to privacy. 

● Gradients calculated on noise injected images from Diffusion forward 
pass are noisy already having similar effect as DP-SGD => we can 
use less noise during DP-SGD

● Intuition: Earlier interactions of the forward are less private (less 
noise has been added), as we get to T iterations, it is mostly all noise

● Introduce two stage process for Reverse sampling 
○ Phase 1: non dp training (DP from forward noise) [S, T] 

(sensitivity is  by 2sqrt(d), d is channel x height x width)
○ Phase 2:  DP-Training  steps [1, S-1] (sensitivity is bound with 

clipping)

DP Training/finetuning for Image generation: Diffusion

dp-promise: Differentially Private Diffusion 
Probabilistic Models for Image Synthesis, Wang et al, 
2024
https://www.usenix.org/system/files/usenixsecurity24
_slides-wang-haichen.pdf 

https://www.usenix.org/system/files/usenixsecurity24_slides-wang-haichen.pdf
https://www.usenix.org/system/files/usenixsecurity24_slides-wang-haichen.pdf


● DP-Promise 

DP Training/finetuning for Image generation: Diffusion

dp-promise: Differentially Private Diffusion Probabilistic Models for Image Synthesis, Wang et al, 2024
https://www.usenix.org/system/files/usenixsecurity24_slides-wang-haichen.pdf 

https://www.usenix.org/system/files/usenixsecurity24_slides-wang-haichen.pdf


● DP-Promise 

DP Training/finetuning for Image generation: Diffusion

dp-promise: Differentially Private Diffusion Probabilistic Models for Image Synthesis, Wang et al, 2024
https://www.usenix.org/system/files/usenixsecurity24_slides-wang-haichen.pdf 

https://www.usenix.org/system/files/usenixsecurity24_slides-wang-haichen.pdf


● DP-Training/finetuning is computationally expensive AND requires access to model checkpoint weights
● Attempts at introducing DP at the inference only have been made for Image modality

○ PATE style models (Private Aggregations of Teacher Ensembles) (Papernot et al, 2017)
■ Split the training data into a number of disjoint datasets
■ Train a model (or finetune a model) on each of them
■ Introduce the noise for DP guarantee to their aggregated prediction, level of noise depends on the 

level of agreement between the models
○ PATE-GAN (Yoon et al, 2019)

■ PATE part is applied to discriminator
■ Private data is partitioned
■ A number of discriminator models are trained
■ A student discriminator model is trained using teacher's DP-fied predictions (on some public data or 

data generated by the generator itself)
■ Generator tries to fool the student, student tries to improve its loss wrt teachers and teachers are 

trained to improve their loss wrt generator

Inference only methods



○ G-PATE (Long et al, 2019)
■ Don't need the student
■ As long as the gradients of the discriminator are DP, we are good
■ A gradient aggregator gets gradients from the teachers and accumulates them in PATE-style before 

passing DP gradient to the generator for update
■ Better quality images for small budgets (eps <=1)

○ PATE-TripleGaN (Jiang et al , 2024) is probably one of the most modern twists on PATE idea

The bottom line: The quality is still nowhere near the Diffusion style models (eps 10)

Inference only methods

PATE-TripleGAN: Privacy-Preserving Image Synthesis with Gaussian Differential Privacy Jiang Zepng, 2024



● Private evolution
○ Use inference only access to generative models
○ Needs a good embedding  (e.g. CLIP, Inception Network etc)
○ Variation API and Random API (usually already available in models like DALL-E, Stable Diffusion or can 

be implemented with appropriate prompt engineering (e.g. GPT models). APIs can be conditioned with 
prompts

○

Inference only methods



● Private evolution for images
○ Some secret sauce includes "look ahead" distance (distance for computing real to synthetic is calculated via getting 

variants of synthetic and calculating average distance to those variants)
○ For user level privacy unit - normalize the vote for the samples for the same user to be 1 (in l2 norm)

● Beauty of PE is
○ Computationally cheaper (still needs a lot of inferences, but does not do DP training)
○ Quality will be fantastic (fidelity? Perhaps not)
○ Private data is never used for finetuning (no risks of outputting it back at all)
○ The only method that can work with small amount of private data
○ Cheap from DP perspective (can allow small epsilons)
○ Is a general framework (Foundational models can be replaced with Synthesizers (e.g. SIM-PE paper)

● Downsides
○ Private data needs to be in distribution for the foundational model
○ Heavily depends on the quality of the initial synthetic set, embedding and variate apis

Inference only methods

DIFFERENTIALLY PRIVATE SYNTHETIC DATA VIA 
FOUNDATION MODEL APIS 1: IMAGES Zinan Lin et al, 
2024



● Utility metrics are pretty much the same for all data modalities
○ Train some downstream model (Machine Learning efficiency)

● Fidelity metrics
○ Inception Score (Khetan & Oh, 2016)
○ Frechet Inception Distance (FID) (Heusel et al, 2017)
○ Mauve (Pillutla et al, 2021) using an appropriate embedding

■ Seeks to trade off type I and type II errors
■ Induces the same ordering as FID and just as FID accounts for both quality and diversity of synthetic 

data

Metrics for evaluating quality of synthetic Image data



Comparison



● For large enough volume of sensitive data (>XXK datapoints) with enough compute

the method that results in highest fidelity and utility of DP synthetic data is almost

always DP-Finetuning of pretrained Diffusion models. 

● Less computationally expensive methods like PE that don’t require finetuning can provide reasonable data 
when sensitive data is somewhat in distribution for the pretraining data or for situations when were strict 
privacy guarantees (low ε) are needed.

● PE is "safer" and easier to explain but DP finetuning will have much higher fidelity of the data

Final Word: We still got a long way to go in DP synthetic IMAGE land

Comparison….or, just tell me what to do!



DP synthetic tabular 
data



● One of the "oldest" type of data organization
● DP synthesis of tabular data has been explored extensively in academia in the last two decades
● Tabular data is the only one type of data that comes with theoretical guarantees on its performance (if 

marginal-based methods are used)
● Privacy unit

○ Usually row-level (example level). If user level, it is assumed that each user contributed at most 1 row
○ DP synthetic data then is expected to be approximately the same, whether a particular row was in the 

dataset or not
○ When each user contributes x rows, one can create an aggregate row or use group privacy (aiming for 

ε/x and  δ/x with per example PU in order to achieve (ε, δ) user-level privacy unit

Tabular data and privacy unit



● Workload based methods and generative AI methods
● Workload based

○ Extremely powerful 
○ Based on aligning statistical queries (like marginals) on real and synthetic data in DP manner
○ Have been explored in context of query release:

■ Query release - the task of creating useful synthetic data that gives accurate answers to a number 
of predefined statistical queries performed on this data, e.g. sums and counts

■ Still end up being useful for training downstream models!
■ Query workload: determines which statistical properties (often low dimensional marginals like counts) 

are most important to preserve from the original dataset, allow to better allocate privacy budget
■ Goal of query release - error over the finite set of queries is bounded in expectation by alpha

● P is often infinity in theoretical literature (so worst case query error is bounded), and 1 or 2 in 
practical literature 

Tabular data: types of methods



● Work on categorical features with a finite domain of values
■ Need to have all numerical features discretized

○ Most of the approaches are working on histogram representation of the dataset (either explicitly materialized 
or implicit) 

○ To get back from the histogram to synthetic data, the easiest way is to turn histogram into probability 
distribution (normalize the counts) and sample the values accordingly to this probability distribution

Tabular data: Workload based



A lot of practical and theoretical algorithms fall into Select-Measure-Estimate Paradigm which decomposes the 
challenge into a sequence of more tractable problems, decoupling the task of query selection from data 
estimation 

Tabular data: Workload based



● Select  - chose collection of queries to measure on private data
● Measure - queries are executed and carefully calibrated noise is added to ensure DP (often via Gaussian)
● Estimate - Most computationally expensive. Takes noise, often inconsistent measurements and builds 

probability distribution over the entire data domain that best explains them.  Often MLE estimation to 
minimize the L2 distance for noisy measurements. Can be iterative process itself

● Repeat - in adaptive algorithms like MWEM, the info about current distribution is used to select next queries, 
often the ones with the highest error, focusing the privacy budget where it is most needed

Tabular data: Workload based Red steps need to 
be with DP



● Select - information that is never measured can't be preserved
● How to select the queries to measure is the most important choice

○ Workload awareness: chose marginals to measure  that are most important for user provided workload 
queries
■ AIM, MWEM+PGM, RAP
■ Agnostic: MST, PrivBayes

○ Data awarness: how much the strategy adapts to statistical properties of the data
■ PrivBayes and MST use a portion of the privacy budget to learn a dependency structure from the 

data, 
■ AIM and PMW - more advanced form of data-awareness  

○ Budget-awareness - intelligent allocation of privacy budget
■ E.g. Larger budget allocated can allow better measure higher-dimensional marginals
■ PrivBayes and PrivSyn are budget-aware (adjust the number and size of marginals based on the 

total budget)
■ AIM  uses annealing procedure adapting per round budget: if the model accuracy does not improve, 

it increases the budget for subsequent iterations

Tabular data: Workload based



● Select - information that is never measured can't be preserved
● How to select the queries to measure is the most important choice

○ Computation Awareness: selection of marginals determines the structure of models that will be 
appropriate at estimation step
■ MST, PrivMRF, AIM - greedily add marginals only if they don't violate a constraint on the complexity 

of the resulting graphical model
● AIM (McKenna et al 2022) algorithm demonstrates awareness of all these 4 criteria

○ W_r is workload awareness (weighting by the relevance to the user task)
○ Error                               provides data awareness by measuring the deficiency of the current 

data-dependent model      
○ Noise penalty                        - budget awareness         

Tabular data: Workload based



● Estimate - given a vector of noisy measurements y, find p that best explains these observations, p is of the size of 
data universe (all possible histogram bins). Framed as L2 minimization problem
○ Dimensionality of search space is exponential
○ Private-PGM (McKenna et al, 2019) uses probabilistic graphical models

■ Insight: when the measurements are a set of low-dimensional marginals, an optimal solution to the L2 
minimization problem is guaranteed to be a distribution that can be represented by a PGM whose 
structure (i.e., its factors) is determined by the measured marginals. 

■ Optimizing over the parameters of this compact graphical model, Private-PGM can achieve exponential 
savings in computation. 

■ Cons: scalability: the computational cost is tied to the graph’s treewidth, making it intractable if the 
measured marginals induce a dense dependency graph.

○ If you relax global consistency (that PGM satisfies), Approx-Private-PGM (APPGM, MCKenna et al 2021) or 
Gradually Update Method (GUM, Zhang et al, 2021) are more scalable

○ RAP (Relaxed Adaptive Projection, Aydore et al, 2021) uses relaxed tabular representation amenable to 
gradient-based optimization (lacks formal guarantees, non convex)

○ GEM (Generative networks with Exponential Mechanism, Liu et al, 2021) parameterizes the distribution with a 
neural net (lacks formal guarantees, non convex)

○ Recently: GREM (Gaussian Residuals-to-Marginals, Mullins et al 2024) - proposes to reconstruct marginals 
not from noisy measurements of other marginals but from noisy measurements of the residuals

● Design tension between rigor and scalability

Tabular data: Workload based



An example of successful algorithm

Tabular data: Workload based



● Early attempts at using end-to-end generative models looked into GANs and VAE
○ Empirical evaluation (Tao et al 2021) showed that they perform worse than marginal/workload based 

methods
● Diffusion based: TableDiffusion (Truda et al, 2023)
● Autoregressive models based

○ DP-TBART (Castellon et al, 2023)
■ Custom LLM-like architecture: 3 layer decoder, not pre-trained
■ Custom tokenizer which assigns different tokens to each column's distinct values , so no two 

columns encodings share the same tokens
■ Each row is encoded as list of tokens (assuming some fixed ordering), column names are not taken 

into account
■ Trained with DP-SGD
■ During sampling, postprocessing is employed to remove all unallowed tokens for each column
■ AIM (workload based) outperforms it
■ Construct synthetic datasets to demonstrate that the DP-TBART outperforms AIM when there are 

complex interactions between columns and we need much higher order marginals

Tabular data: Modern generative models based



● Autoregressive models
○ TabularARGN (Tiwald et al 2025) 

■ Don't use transformers to model joint distribution
■ Propose a multi tower model with each tower 

dedicated to each column
■ Before the towers, dedicated embedding for each 

column
● Embeddings are combined (with some 

permutation) and forwarded to towers
■ Each tower only sees features on which it 

conditions (eg 3rd is conditioned on the first 2) 
■ Towers are standard FFN with RELU and dropout
■ Each tower has softmax head, CE loss. Total loss is 

sum of the losses from all towers
■ DP-Training

Tabular data: Modern generative models based

TabularARGN: A Flexible and Efficient 
Auto-Regressive Framework for Generating 
High-Fidelity Synthetic Data, Tiwald et al, 2025



● Pretrained LLM based
● Motivation

○ Marginal/workload based methods need preprocessing (outlier removal, discretization, normalization, 
smoothing etc)

○ They don't take column names into account
○ Histogram based representation eliminates language connection that even simple LLMs can capture (e.g. 

in Adult dataset age, marital status and education have clear connection)
■ This knowledge can be discovered with enough data in histograms but comes for free from pre-trained 

models 
● First successful non DP model is GReaT (Borisov et al, 2023)

○ Textual encoding of rows: "Bachelors Education, Adult male, income <50k "
○ Order of columns is permuted to allow conditional sampling later
○ LLM finetuned on textual encodings 

Tabular data: Modern generative models based



● DP-LLMTGen - DP implementation of GReaT 
idea is by Tran and Xiong (2024)
○ Direct DP training of GReat was 

unsuccessful 
○ Two stage: learn the "format compliance" 

(column names and values) and private 
data modelling

○ Lora finetuning and DP Lora for two stages 
respectively

○ Loss is replaced with Weighted CE and 
Numerical Understanding loss 
■ WCE upweights private tokens and 

downweights formatting tokens (is, 
comma etc)

■ NUL penalizes the square loss 
between predicted numerical and 
actual numerical value

● Impressive results (comparable with RAP++) but 
didn't compare with winning workload based 
methods like AIM

Tabular data: Modern generative models based

Differentially Private Tabular Data 
Synthesis using Large Language 
Models, Tran and Xiong, 2024



● Concurrently Afonja et al (2025) came up with similar two stage method
○ For the first stage, they show that even using some public data encoding (that does not use the same 

column names and have different categorical values but conforms to the same encoding scheme) works 
sufficiently well

○ Advocate for not shuffling the columns when encoding, it makes DP training harder
○ Use only a weighted token loss (no NUL)

■ Based on their ablations, WCE is beneficial only when public data was used for Stage 1 and less 
needed when random date using the real column names and values was used

○ They compare with MST and AIM, and while their method demonstrates good performance on most metrics, 
underperforming on certain fidelity metrics especially for large dimensional datasets
■ AIM (workload based) still significantly outperforms 

Tabular data: Modern generative models based



● Plenty of fidelity metrics
○ Statistical fidelity - average of total variation distances of joint distributions (1-5 way marginals) between syn 

and real data (Aydore et al, 2021)
○ Pairwise attribute distribution similarity - measures the similarity of all two way marginals by averaging 

histogram intersections with numerical attributes discretized into bins (Afonja et al, 2025)
○ Pairwise correlation similarity - estimates how well the synthetic data preserves pairwise column correlation
○ Kolmogrov-Smirnov test for numerical attributes and Chi-square test for categorical columns (Castellon et al)
○ Distributional metrics like MMD and alpha-Precision

Tabular data: evaluating synthetic data



● We are encouraging a comprehensive evaluation for all creators of new DP tabular methods, comparing with 
with winning marginal based methods as a strong baseline (e.g. AIM)

● Pragmatically speaking, you are still better off using marginal based methods like MWEM+PGM or AIM if you 
don't expect extremely high degree interaction between the columns
○ Marginal based methods are exponential in higher order marginals

● There is a potential for LLM based methods to outperform marginal based methods
○ Small data regimes where histogram based methods won't be able to discover connections that LLMs 

already know based on column names and values
● Many extremely successful models in non DP settings have not yet been tried in DP (TabPFNGen, Ma et 

al 2024)

Tabular data: just tell me what to do



Practical Privacy 
Considerations 



Dataset 
adjacency Randomized 

Training Alg M
Model 
M(D)D

(ε, δ)-Differential Privacy: The distribution of the 
output M(D) on database D is nearly the same as 
M(D′) for all adjacent databases D and D′ (differ by X 
units)

∀S:    Pr[M(D)∊S] ≤ exp(ε) ∙ Pr[M(D′)∊S] + δ

Randomized 
Training Alg M

Model 
M(D')D'Controls the unit of 

privacy 

Example-level: D & D’ 
differ by a single row

User-level: D & D’ differ 
by all the rows 
belonging to a single 
user



Noised Average
Updated Model

D

+
Average

Clip to S

Clip to S

u4

u7

u10

u1780

User-level DP-SGD via user sampling

H. B. McMahan, et al. Learning Differentially Private 
Recurrent Language Models. ICLR 2018.

Sample users rather than 
examples, compute updated 
models by multiple steps of “local” 
SGD

Average the updated models,
and repeat



DP fine-tuning for synthetic data generation 

Data 
Corpus 

DP-fied
Generator

DP 
Synthetic 

Text

no human inspection

Filtered 
Corpus

Filter 
“high quality 
examples”

human inspectable 

Evaluation 
metrics for 
synthetic data

Evaluation 
Metrics for real 
data

Bounded  
Corpus

Bound 
contribution of 

each user

A model 
pre-trained on 
web data

User-level 
DP-SGD

Bulk 
prompting



DP fine-tuning for synthetic data generation 

Data 
Corpus 

DP-fied
Generator

DP 
Synthetic 

Text

no human inspection

Filtered 
Corpus

Filter 
“high quality 
examples”

human inspectable 

Evaluation 
metrics for 
synthetic data

Evaluation 
Metrics for real 
data

Bounded  
Corpus

Bound 
contribution of 

each user

A model 
pre-trained on 
web data

User-level 
DP-SGD

Bulk 
prompting

Is the generated data safe to use?



Proprietary + Confidential

An analytical DP guarantee may overstate the practical risks of releasing a model.

Analytical guarantee quantifies defense against…
● the “strongest” attack (even if computationally infeasible)
● on the “worst-case” user (even if such user does not exist in practice)
● given full “white-box” information: access to all model training checkpoints
● with potential “lossy” steps in the analysis leading to pessimistic estimates.

Most achievable DP 𝜀 values in ML applications are often high

Why not just train with user-level DP? 



Differential Privacy

adversary

Randomized 
Algorithm

D

D’

crafter

D

D’



Differential Privacy

1.0 -

0.8 -

0.6 -

0.4 -

0.2 -

0.0 -
0.0 0.4 0.2 0.6 0.8 1.0 

FPR

TP
R

adversary

Randomized 
Algorithm

crafter

D

D’



𝛿

slope= e𝜀

Differential Privacy

adversary

Randomized 
Algorithm

crafter

D

D’

The Composition Theorem for Differential Privacy Kairouz  et al., ICML’15



Differential Privacy
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Differential Privacy

1.0 -

0.8 -

0.6 -

0.4 -

0.2 -

0.0 -
0.0 0.4 0.2 0.6 0.8 1.0 

𝛿

FPR

TP
R

𝜀 = 10

𝜀 = 3

adversary

Randomized 
Algorithm

crafter

D

D’



Model  auditing for privacy violations

Data 
Corpus 

DP-fied
Generator

DP 
Synthetic 

Text

no human inspection

Filtered 
Corpus

Filter 
“high quality 
examples”

human inspectable 

Evaluation 
metrics for 
synthetic data

Evaluation 
Metrics for real 
data

Bounded  
Corpus

Bound 
contribution of 

each user

A model 
pre-trained on 
web data

User-level 
DP-SGD

Bulk 
prompting

Model 
AuditingBlock access to the model

Allow access to the model



[CTWJ+20]  - https://arxiv.org/abs/2012.07805
[CHNJ+23] - https://arxiv.org/abs/2301.13188
[NCHJ+23] - https://arxiv.org/abs/2311.17035

GPT2 - [CTWJ+20] Stable Diffusion - [CHNJ+23] ChatGPT - [NCHJ+23]

Generative models can memorize training data 

https://arxiv.org/abs/2012.07805
https://arxiv.org/abs/2301.13188
https://arxiv.org/abs/2311.17035


Generalization

Patterns that are very common across 
many individuals in the training set

been up to?

What have you….



Generalization vs. privacy violation

Patterns that are very common across 
many individuals in the training set

Patterns that are unique to a user or 
few users in the training set

4012 8888 8888 1881

Alice's credit card number is 
….

been up to?

What have you….



Reconstruction attacks

Alice

?
Alice’s credit card 
number is 4012 
8888 8888 1881

Alice’s credit card number is

4012 8888 8888 1881

Dave

Carol

Bob
ModelModel Training

Dave

Carol

Bob



Is this a privacy violation?

Alice

?
Please let me 

know if you have 
any questions

Please let me know if you

have any questions

Dave

Carol

Bob
ModelModel Training

Please let me 
know if you 
have any 
questions

Dave

Carol

Bob



Okay, what about this? 

Alice

?

Alice has a pet

cat

Dave

Carol

Bob
ModelModel Training

Dave

Carol

Bob

Alice has a 
pet cat

Carol has a 
pet cat Dave has a 

pet bird

Bob has a 
pet dog



Having an i.i.d held out baseline is important

Alice

?

Alice has a pet

cat

Dave

Carol

Bob
ModelModel Training

Dave

Carol

Bob

Alice has a 
pet cat

Eve

Eve has a 
pet rabbit

?
Eve has a 

pet
cat

held-out



Mary

Lisa

Kevin

Judy

Ivan

Heidi

Grace

Fred

Dave

Reconstruction attacks using natural (training) data

ModelFine Tuning

Carol

Bob

Alice

Lisa

Fred

Alice

held-out

dataset Mary

Judy

Ivan

Grace

Dave

Bob

Kevin

Lisa

Heidi

Fred

Carol

Alice

Random Split

Kevin

Heidi

Carol

held-in

compare reconstruction rates on held-in vs. 
held-out

(each user is capped to 39 training examples)



Reconstructing natural (training) data



Stronger reconstruction attacks

Alice

?

vanta اتخاذ цифровharm� 
pasar Jung armŶǓ재배포 

szpitalaica

Dave

Carol

Bob
ModelModel Training

Dave

Carol

Bob

 vanta اتخاذ
 цифровharm� pasar

 Jung armŶǓ재배포
 szpitalaica

 उम्रONDEଟayleigh
krant

insert

उम्रONDEଟayleigh krant



Mary

Lisa

Kevin

Judy

Ivan

Heidi

Grace

Fred

Dave

Reconstruction attacks using natural + random data

ModelFine Tuning

Carol

Bob

Alice

Lisa

Fred

Alice

held-out

dataset Mary

Judy

Ivan

Grace

Dave

Bob

Kevin

Lisa

Heidi

Fred

Carol

Alice

Random Split
Kevin

Heidi

Carol

held-in

compare reconstruction rates on 
held-in vs. held-out

3

2

1

random canary 
users



Reconstructing natural + random data



Are random strings “optimal” for privacy auditing?

 vanta
 цифровharm�

 pasar Jung
 armŶǓ재배포

 szpitalaica

outlier prefix

उम्रOND
Eଟayleig
h krant

suffix
● very unusual words
● impossible “phrases”/combinations
● each prefix phrase paired uniquely with suffix in 

data
● high loss ⇨ large gradient

Easy to learn association from a few presentations

The third annual 
meeting of the 

corvid appreciation 
society 

typical prefix ● mostly common words
● natural phrases/combinations
● many possible continuations in data distribution
● lower loss ⇨ lower gradient

Harder to learn association from a few presentations

is 
postponed

until

suffix



Is this type of privacy auditing the strongest?



Is this type of privacy auditing the strongest?

Generate 
text

exactly

Generate 
text with a 
few errors

Make inference 
given a few 

options

Make 
binary 

inference

Harder for adversary,
easier to defend,

weaker privacy audit

Easier for adversary,
harder to defend,

stronger privacy audit

The goal of strong privacy auditing is to make the adversary’s task as easy as possible.

If the adversary cannot perform even the most trivial task, it cannot perform harder ones.



User-level membership inference attacks

Alice

Dave

Carol

Bob

Alice spent 
her vacation in 

the Faroe 
Islands

Alice

Dave

Carol

Bob

Alice spent 
her vacation in 

Italy

modelfine-tuning

Italy

the 
Faroe 

Islands

?
“adversary”

User Inference Attacks on Large Language Models, Kandpal et al., EMNLP 2024



Back to our auditing experiment

Mary

Lisa

Kevin

Judy

Ivan

Heidi

Grace

Fred

Dave ModelFine Tuning

Carol

Bob

Alice

6

5

4

held-out canary 
users dataset

3

2

1

held-in canary 
users 3

5

2

4

6

1

shuffled set of 
canaries

“adversary”

?

adversary has 
to decide IN vs. 

OUT 
one-by-one



How well do we do on these kinds of attacks?

TPR=99.9%
@FPR=0.1%

TPR=1.14%
@FPR=0.1%

Each canary 
user can have 

39 training 
examples

Each canary 
user can have 

1 training 
example



Reconstruction attacks under DP

Create 10k random strings sampling 
each token uniformly from vocab

Prefix length: 50 ⇨ suffix length: 10

Insert 39 times (max any real user is 
allowed to participate)

Measure fraction of suffixes fully or 
partially reconstructed given prefix

With 𝜺=10 DP: not a single string is 
reconstructed at any edit distance

(yes this is the real chart, not a bug)



What about user-level membership inference attacks?

TPR=99.9%
@FPR=0.1%

TPR=1.14%
@FPR=0.1%

TPR=0.1%
@FPR=0.1%



Wait a second….. what’s going on here?  

TPR=99.9%
@FPR=0.1%

TPR=1.14%
@FPR=0.1%

TPR=0.1%
@FPR=0.1%

𝜀 = 10

0.0 0.4 0.2 0.6 0.8 1.0 

False Positive Rate

𝜀 = 2

𝜀 = 1

0.0 -

1.0 -

0.8 -

0.6 -

0.4 -

0.2 -

Tr
ue

 P
os

iti
ve

 R
at

e

slope:
e𝜺

(to scale)

𝜀 = 3



adversary

DP’s threat model

Randomized 
Algorithm

crafter

D

D’

worst-case D, D’

infinite compute 
power and side 

knowledge

D

D’



adversary

Other sources of randomness in training

Random init, 
shuffle and 
batch, etc.

crafter

D

D’

worst-case D, D’

infinite compute 
power and side 

knowledge

Train with 
DP-FedAvg

D

D’

Randomized Algorithm



adversary

Limited model checkpoint release

D

D’
infinite compute 
power and side 

knowledge

Train with 
DP-FedAvg

Random init, 
shuffle and 
batch, etc.

crafter

worst-case D, D’

D

D’

Randomized Algorithm



adversary

API-only access to generations from the model

D

D’
infinite compute 
power and side 

knowledge

Train with 
DP-FedAvg

Random init, 
shuffle and 
batch, etc.

crafter

worst-case D, D’

D

D’

“Black-box” access to the model



Auditing synthetic data 

Private 
data

DP-fied 
Generator

Synthetic 
data

Fine-tuned 
model

the actual surface 
of attack

the surface of attack 
we have audited



Data lineage

Synthetic 
Corpus A

Bulk 
prompting

Synthetic 
Corpus B

Bulk 
prompting

Corpus A DP-fied
Generator

Filtered 
Corpus

Filter 
“high quality 
examples”

Bounded  
Corpus

Bound 
contribution of 

each user
User-level 
DP-SGD

𝜀 = 5

Corpus B DP-fied
Generator

Filtered 
Corpus

Filter 
“high quality 
examples”

Bounded  
Corpus

Bound 
contribution of 

each user
User-level 
DP-SGD

𝜀 = 5 𝜀 = 5?



Privacy principles

Processing encodes
Data Minimization

(security, access control, focused collection, TTLs, 
…)

Released outputs provide
Data Anonymization

(differential privacy (DP), memorization auditing, …)

Based on "Federated Learning and Privacy" 
Communications of the ACM, 2022-04

Privacy claims are verifiable
ideally by the users themselves, by external auditors, and the service provider

The User has Transparency, Auditability, and Control
of what data is used, what purpose it is used for, and how it is processed.

(forward-looking transparency, retrospective auditability of computation or release details, 
control of at least the immediate use of data, e.g. use in training.)

https://cacm.acm.org/magazines/2022/4/259417-federated-learning-and-privacy/fulltext

